Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Heterogeneous ozonolysis of pirimicarb and isopropalin: mechanism of ozone-induced N-dealkylation and carbonylation reactions

Bo Yang A , Youfeng Wang A , Wang Zhang B , Changgeng Liu A , Xi Shu A and Jinian Shu A B C
+ Author Affiliations
- Author Affiliations

A Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, P. R. China.

B Department of Environmental Engineering, Beijing General Research Institute of Milling and Metallurgy, Number 188, South 4th Ring Road West, Beijing 100070, P. R. China.

C Corresponding author. Email: jshu@rcees.ac.cn

Environmental Chemistry 9(6) 521-528 https://doi.org/10.1071/EN12092
Submitted: 6 July 2012  Accepted: 23 October 2012   Published: 10 December 2012

Environmental context. Pesticides emitted to the atmosphere can undergo extensive chemical transformations through reaction with atmospheric oxidants. Understanding the atmospheric lifetime and degradation mechanism of typical pesticides is very important to health and environmental risk assessments. We investigate the degradation products, lifetimes and reaction mechanisms of two representative pesticides oxidised by ozone in order to understand the environmental behaviours of these pesticides and their analogues.

Abstract. N,N-Dialkyl-substituted pyrimidine and N,N-dialkylaniline are basic structures for many pesticides. In this study, the heterogeneous reactions of O3 with pirimicarb and isopropalin adsorbed on silica particles are investigated. The N-dealkylation and carbonylation of the N,N-dialkyl group have been observed as the important reaction pathways for both pirimicarb and isopropalin. The measured effective rate constants for pirimicarb and isopropalin under room temperature (298 ± 2 K) are 1.45 × 10–18 (s.d. ±0.17) and 2.70 × 10–19 cm3 molecules–1 s–1 (±0.27). The corresponding half-life for the particulate pirimicarb and isopropalin are 5.6 and 30 days, assuming an average tropospheric ozone concentration of 40 ppbv. Detailed reaction mechanisms are proposed for the first time based on the density functional theory calculations. In addition, the transformation of –NO2 into –NHOH is observed in the ozonolysis of isopropalin, which has not been reported in previous studies.

Additional keywords: pesticides, silica particles.


References

[1]  R. Guicherit, D. J. Bakker, P. de Voogt, F. van den Berg, H. F. G. van Dijk, W. A. J. van Pul, Environmental risk assessment for pesticides in the atmosphere; the results of an international workshop. Water Air Soil Pollut. 1999, 115, 5.
Environmental risk assessment for pesticides in the atmosphere; the results of an international workshop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVagsrs%3D&md5=ab80a7ab5594c2d7b0c450223d36bb3eCAS |

[2]  F. van den Berg, R. Kubiak, W. G. Benjey, M. S. Majewski, S. R. Yates, G. L. Reeves, J. H. Smelt, A. M. A. van der Linden, Emission of pesticides into the air. Water Air Soil Pollut. 1999, 115, 195.
Emission of pesticides into the air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVags7w%3D&md5=b7fba57578acb52ff74b31705ea7b792CAS |

[3]  D. E. Glotfelty, M. M. Leech, J. Jersey, A. W. Taylor, Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor, and toxaphene. J. Agric. Food Chem. 1989, 37, 546.
Volatilization and wind erosion of soil surface applied atrazine, simazine, alachlor, and toxaphene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlSnsr4%3D&md5=8752da1eaedee65ef06eca037be37f90CAS |

[4]  D. Bémer, J. Fismes, I. Subra, V. Blachère, J.-C. Protois, Pesticide aerosol characteristics in the vicinity of an agricultural vehicle cab during application. J. Occup. Environ. Hyg. 2007, 4, 476.
Pesticide aerosol characteristics in the vicinity of an agricultural vehicle cab during application.Crossref | GoogleScholarGoogle Scholar |

[5]  R. Atkinson, R. Guicherit, R. A. Hites, W. U. Palm, J. N. Seiber, P. de Voogt, Transformations of pesticides in the atmosphere: a state of the art. Water Air Soil Pollut. 1999, 115, 219.
Transformations of pesticides in the atmosphere: a state of the art.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVags70%3D&md5=2fe76d99ffe274ce1dc6c5123d18a42bCAS |

[6]  B. J. Finlayson-Pitts, J. N. Pitts, Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997, 276, 1045.
Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt12ls7s%3D&md5=807f978e0599cc56aec60d6d7cd1b921CAS |

[7]  B. Yang, Y. Zhang, J. W. Meng, J. Gan, J. N. A. Shu, Heterogeneous reactivity of suspended pirimiphos-methyl particles with ozone. Environ. Sci. Technol. 2010, 44, 3311.
Heterogeneous reactivity of suspended pirimiphos-methyl particles with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2ltLw%3D&md5=8a2e05a47ea11fb84341c60009301d1bCAS |

[8]  L. H. Machemer, M. Pickel, Carbamate insecticides. Toxicology 1994, 91, 29.
Carbamate insecticides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvVGrs7s%3D&md5=d307d2ae999c47dee7a32503d323c3d5CAS |

[9]  T. W. Chen, F. F. Fu, Z. X. Chen, D. Z. Li, L. Zhang, G. N. Chen, Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry. J. Chromatogr. A 2009, 1216, 3217.
Study on the photodegradation and microbiological degradation of pirimicarb insecticide by using liquid chromatography coupled with ion-trap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFaiur4%3D&md5=45c02acd9c20a07cb6bf8763af425a10CAS |

[10]  T. Golab, M. E. Amundson, Degradation of trifluralin, oryzalin, and isopropalin in soil. Environ. Qual. Saf. Suppl. 1975, 3, 258.
| 1:CAS:528:DyaE28XltFOqtrc%3D&md5=ef767426163cad30aa2099e44401ab61CAS |

[11]  J. Hardt, J. Angerer, Determination of metabolites of pirimicarb in human urine by gas chromatography-mass spectrometry. J. Chromatogr. B 1999, 730, 229.
Determination of metabolites of pirimicarb in human urine by gas chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Ontb4%3D&md5=36d674fac9737ed3b16a048a7bd04713CAS |

[12]  U. Hoffmann, U. Hecker, P. Abel, Acute poisoning by pirimicarb: clinical and toxicological features. Clin. Toxicol. 2008, 46, 694.
Acute poisoning by pirimicarb: clinical and toxicological features.Crossref | GoogleScholarGoogle Scholar |

[13]  H. X. Liu, C. H. Ding, S. S. Zhang, H. M. Liu, X. C. Lia, L. B. Qu, Y. F. Zhao, Y. J. Wu, Simultaneous residue measurement of pendimethalin, isopropalin, and butralin in tobacco using high-performance liquid chromatography with ultraviolet detection and electrospray ionization/mass spectrometric identification. J. Agric. Food Chem. 2004, 52, 6912.
Simultaneous residue measurement of pendimethalin, isopropalin, and butralin in tobacco using high-performance liquid chromatography with ultraviolet detection and electrospray ionization/mass spectrometric identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVGqtbg%3D&md5=6e63c9bbdad9271d291980291e02590eCAS |

[14]  F. M. Pirisi, P. Cabras, V. L. Garau, M. Melis, E. Secchi, Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase. J. Agric. Food Chem. 1996, 44, 2417.
Photodegradation of pesticides. Photolysis rates and half-life of pirimicarb and its metabolites in reactions in water and in solid phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksV2ntLg%3D&md5=ed50ca252ab3be3b54224594dd1e2541CAS |

[15]  E. Romero, P. Schmitt, M. Mansour, Photolysis of pirimicarb in water under natural and simulated sunlight conditions. Pestic. Sci. 1994, 41, 21.
Photolysis of pirimicarb in water under natural and simulated sunlight conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslKis7o%3D&md5=7d7ee51e8ea0fdee1302a1ebb119a02bCAS |

[16]  S. Net, S. Gligorovski, S. Pietri, H. Wortham, Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions. Phys. Chem. Chem. Phys. 2010, 12, 7603.
Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWnu7k%3D&md5=b69f8f050b3f6c422eca14ae60def6e6CAS |

[17]  S. Gligorovski, H. Herrmann, Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution. Phys. Chem. Chem. Phys. 2004, 6, 4118.
Kinetics of reactions of OH with organic carbonyl compounds in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlyrsLc%3D&md5=5340a7c74e88db911648f6d376bde565CAS |

[18]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).

[19]  T. Tuttle, J. Cerkovnik, B. Plesnicar, D. Cremer, Hemiortho esters and hydrotrioxides as the primary products in the low-temperature ozonation of cyclic acetals: an experimental and theoretical investigation. J. Am. Chem. Soc. 2004, 126, 16 093.
Hemiortho esters and hydrotrioxides as the primary products in the low-temperature ozonation of cyclic acetals: an experimental and theoretical investigation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslyksLs%3D&md5=7ca6662eb4ca06b1273c79c2ea30498bCAS |

[20]  T. Golab, W. A. Althaus, H. L. Wooten, Fate of [14C] trifluralin in soil. J. Agric. Food Chem. 1979, 27, 163.
Fate of [14C] trifluralin in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXotF2lug%3D%3D&md5=a268ed339f4a05beb71fd2a638f5ee55CAS |

[21]  J. M. Herrmann, C. Guillard, M. Arguello, A. Aguera, A. Tejedor, L. Piedra, A. Fernandez-Alba, Photocatalytic degradation of pesticide pirimiphos-methyl – determination of the reaction pathway and identification of intermediate products by various analytical methods. Catal. Today 1999, 54, 353.
Photocatalytic degradation of pesticide pirimiphos-methyl – determination of the reaction pathway and identification of intermediate products by various analytical methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVWisrs%3D&md5=2c884dd8488a7e11ec56917fa066609bCAS |

[22]  J. W. Meng, B. Yang, Y. Zhang, X. Shu, J. N. Shu, Ozonation of trifluralin particles: an experimental investigation with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. J. Hazard. Mater. 2009, 172, 390.
Ozonation of trifluralin particles: an experimental investigation with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgtbjJ&md5=b262a061a681f2f0c1329a64b9a9a6f0CAS |

[23]  S. Chiron, A. Rodriguez, A. Fernandez-Alba, Application of gas and liquid chromatography mass spectrometry to the evaluation of pirimiphos methyl degradation products in industrial water under ozone treatment. J. Chromatogr. A 1998, 823, 97.
Application of gas and liquid chromatography mass spectrometry to the evaluation of pirimiphos methyl degradation products in industrial water under ozone treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtl2msLw%3D&md5=428eb33a72e90e3c49e246205e349272CAS |

[24]  A. Alebić-Juretić, T. Cvitaš, L. Klasinc, Heterogeneous polycyclic aromatic hydrocarbon degradation with ozone on silica-gel carrier. Environ. Sci. Technol. 1990, 24, 62.
Heterogeneous polycyclic aromatic hydrocarbon degradation with ozone on silica-gel carrier.Crossref | GoogleScholarGoogle Scholar |

[25]  C. H. Wu, I. Salmeen, H. Niki, Fluorescence spectroscopic study of reactions between gaseous ozone and surface-adsorbed polycyclic aromatic-hydrocarbons. Environ. Sci. Technol. 1984, 18, 603.
Fluorescence spectroscopic study of reactions between gaseous ozone and surface-adsorbed polycyclic aromatic-hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksVaksL0%3D&md5=e55e0b069836fb96a57b92640b996407CAS |

[26]  S. Net, S. Gligorovski, S. Pietri, H. Wortham, Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions. Phys. Chem. Chem. Phys. 2010, 12, 7603.
Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWnu7k%3D&md5=b69f8f050b3f6c422eca14ae60def6e6CAS |

[27]  E. Perraudin, H. Budzinski, E. Villenave, Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J. Atmos. Chem. 2007, 56, 57.[Published online early 27 October 2006].
Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12qu7%2FP&md5=e5b29495d46bce05abbba7c598f4bdf8CAS |

[28]  J. Gan, B. Yang, Y. Zhang, X. Shu, C. Liu, J. Shu, Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone. J. Phys. Chem. A 2010, 114, 12 231.
Products and kinetics of the heterogeneous reaction of suspended vinclozolin particles with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjs7bI&md5=8dc215128f7085c51f8d7993211d2cfeCAS |

[29]  R. Vingarzan, A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431.
A review of surface ozone background levels and trends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKltb0%3D&md5=8acd55ba8e1b80beded40c68ac72e44cCAS |

[30]  J. Cerkovnik, E. Erzen, J. Koller, B. Plesnicar, Evidence for HOOO radicals in the formation of alkyl hydrotrioxides (ROOOH) and hydrogen trioxide (HOOOH) in the ozonation of C–H bonds in hydrocarbons. J. Am. Chem. Soc. 2002, 124, 404.
Evidence for HOOO radicals in the formation of alkyl hydrotrioxides (ROOOH) and hydrogen trioxide (HOOOH) in the ozonation of C–H bonds in hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlClurs%3D&md5=e030c95c7d64ff83979ee63f88be1c46CAS |

[31]  D. H. Giamalva, D. F. Church, W. A. Pryor, Kinetics of ozonation. 5. Reactions of ozone with carbon–hydrogen bonds. J. Am. Chem. Soc. 1986, 108, 7678.
Kinetics of ozonation. 5. Reactions of ozone with carbon–hydrogen bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xmt1Gmu7s%3D&md5=9fbed9fcfba421ad6ad22af80883467eCAS |

[32]  A. C. Voukides, K. M. Konrad, R. P. Johnson, Competing mechanistic channels in the oxidation of aldehydes by ozone. J. Org. Chem. 2009, 74, 2108.
Competing mechanistic channels in the oxidation of aldehydes by ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKitbo%3D&md5=0031d427c028a47f04decfe87e5dec82CAS |

[33]  Q. K. Timerghazin, S. L. Khursan, V. V. Shereshovets, Theoretical study of the reaction between ozone and C–H bond: gas-phase reactions of hydrocarbons with ozone. J. Mol. Struct. THEOCHEM 1999, 489, 87.
Theoretical study of the reaction between ozone and C–H bond: gas-phase reactions of hydrocarbons with ozone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsleltbk%3D&md5=7ad0976e97fcf10d4eab2cf4f3a16ef3CAS |

[34]  D. Li, Y. Wang, C. Yang, K. Han, Theoretical study of N-dealkylation of N-cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the regioselectivity. Dalton Trans. 2009, 2009, 291.
Theoretical study of N-dealkylation of N-cyclopropyl-N-methylaniline catalyzed by cytochrome P450: insight into the origin of the regioselectivity.Crossref | GoogleScholarGoogle Scholar |

[35]  Y. Wang, D. Kumar, C. Yang, K. Han, S. Shaik, Theoretical study of N-demethylation of substituted N,N-dimethylanilines by cytochrome P450: the mechanistic significance of kinetic isotope effect profiles. J. Phys. Chem. B 2007, 111, 7700.
Theoretical study of N-demethylation of substituted N,N-dimethylanilines by cytochrome P450: the mechanistic significance of kinetic isotope effect profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1artLc%3D&md5=4d28d421220573014f12f52c50020dcaCAS |

[36]  S. P. de Visser, D. Kumar, S. Cohen, R. Shacham, S. Shaik, A predictive pattern of computed barriers for C–H hydroxylation by compound I of cytochrome P450. J. Am. Chem. Soc. 2004, 126, 8362.
A predictive pattern of computed barriers for C–H hydroxylation by compound I of cytochrome P450.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVWqur8%3D&md5=50946f395f194cbab290be6910c07f73CAS |

[37]  W. U. Palm, M. Elend, H. U. Kruger, C. Zetzsch, Atmospheric degradation of a semivolatile aerosol-borne pesticide: reaction of OH with pyrifenox (an oxime-ether), adsorbed on SiO2. Chemosphere 1999, 38, 1241.
Atmospheric degradation of a semivolatile aerosol-borne pesticide: reaction of OH with pyrifenox (an oxime-ether), adsorbed on SiO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXptVGqsA%3D%3D&md5=e1c7d39456233d0d887cd901b1752d51CAS |

[38]  M. Pflieger, A. Monod, H. Wortham, Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions. Atmos. Environ. 2009, 43, 5597.
Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cgu7%2FE&md5=19cf08f2edfd780a1b380545addf13a0CAS |