Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Distribution of arsenic species in an open seagrass ecosystem: relationship to trophic groups, habitats and feeding zones

A. Price A B , W. Maher A E , J. Kirby A C , F. Krikowa A , E. Duncan A , A. Taylor A and J. Potts A D
+ Author Affiliations
- Author Affiliations

A Ecochemistry Laboratory, Institute for Applied Ecology, Faculty of Applied Science, University of Canberra, ACT 2601, Australia.

B Murray–Darling Freshwater Centre, PO Box 991, Wodonga, VIC 3685, Australia.

C CSIRO Land and Water, PMB2 Glen Osmond, SA 5064, Australia.

D Coastal Water Science Unit, NSW Office of Environment and Heritage, Department of Premier and Cabinet, 59–61 Goulburn Street, Sydney, NSW 2000, Australia.

E Corresponding author. Email: bill.maher@canberra.edu.au

Environmental Chemistry 9(1) 77-88 https://doi.org/10.1071/EN11105
Submitted: 1 August 2011  Accepted: 11 October 2011   Published: 10 January 2012

Environmental context. Although arsenic occurs at high concentrations in many marine systems, the influencing factors are poorly understood. The arsenic content of sediments, detritus, suspended particles and organisms have been investigated from different trophic levels in an open seagrass ecosystem. Total arsenic concentrations and arsenic species were organism-specific and determined by a variety of factors including exposure, diet and the organism physiology.

Abstract. The distribution and speciation of arsenic within an open marine seagrass ecosystem in Lake Macquarie, NSW, Australia is described. Twenty-six estuarine species were collected from five trophic groups (autotrophs, suspension-feeders, herbivores, detritivores and omnivores, and carnivores). Sediment, detritus, epibiota and micro-invertebrates were also collected and were classified as arsenic source samples. There were no significant differences in arsenic concentrations between trophic groups and between pelagic and benthic feeders. Benthic-dwelling species generally contained higher arsenic concentrations than pelagic-dwelling species. Sediments, seagrass blades and detritus contained mostly inorganic arsenic (50–90 %) and arsenoribosides (10–26 %), with some methylarsonate (9.4–14.6 %) and dimethyarsinate (7.9–9.7 %) in seagrass blades and detritus. Macroalgae contained mostly arsenoribosides (40–100 %). Epibiota and other animals contained predominately arsenobetaine (63–100 %) and varying amounts of dimethyarsinate (0–26 %), monomethyarsonate (0–14.6 %), inorganic arsenic (0–2 %), trimethylarsenic oxide (0–6.6 %), arsenocholine (0–12 %) and tetramethylarsonium ion (0–4.5 %). It was concluded that arsenic concentrations and species within the organisms of the Lake Macquarie ecosystem are species-specific and determined by a variety of factors including exposure, diet and the physiology of the organisms.


References

[1]  J. S. Edmonds, K. A. Francesconi, Organoarsenic compounds in the marine environment, in Organometallic Compounds in the Environment, 2003, Chapter 5, pp. 195–222 (Wiley: Chichester, UK).

[2]  W. Maher, S. Foster, F. Krikowa, Arsenic species in Australians temperate marine food chains. Mar. Freshwater Res. 2009, 60, 885.
Arsenic species in Australians temperate marine food chains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGhs77F&md5=cd5b466d89bda131510c7e71def1808aCAS |

[3]  N. P. C. Tu, T. Agusa, N. N. Ha, B. C. Tuyen, S. Tanabe, I. Takeuchi, Stable isotope-guided analysis of biomagnifications profiles of arsenic species in a tropical mangrove ecosystem. Mar. Pollut. Bull. 2011, 63, 124.
Stable isotope-guided analysis of biomagnifications profiles of arsenic species in a tropical mangrove ecosystem.Crossref | GoogleScholarGoogle Scholar |

[4]  W. A. Maher, S. D. Foster, A. M. Taylor, F. Krikowa, E. G. Duncan, A. A. Chariton, Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia. Environ. Chem. 2011, 8, 9.
Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1GlsLg%3D&md5=1754ec210e91834fe698d4fdea02b8aaCAS |

[5]  S. Foster, W. Maher, E. Schmeisser, A. Taylor, F. Krikowa, S. Apte, Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited. Environ. Chem. 2006, 3, 304.
Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVaksr4%3D&md5=f70df9a70d5d0d8f81c2509c041529e9CAS |

[6]  S. Foster, W. Maher, F. Krikowa, Changes in proportions of arsenic species with an Ecklonia radiata food chain. Environ. Chem. 2008, 5, 176.
Changes in proportions of arsenic species with an Ecklonia radiata food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCrtrk%3D&md5=10ddbc058fe65deffc5025685e41bb48CAS |

[7]  J. Kirby, W. Maher, D. Spooner, Arsenic occurrence and species in near-shore macroalgae-feeding marine animals. Environ. Sci. Technol. 2005, 39, 5999.
Arsenic occurrence and species in near-shore macroalgae-feeding marine animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWit7g%3D&md5=4c8c1d972efd5b16211d77cf6dd6da35CAS |

[8]  R. Kubuta, T. Kunito, S. Tanabe, Arsenic accumulation in the liver tissue of marine mammals. Environ. Pollut. 2001, 115, 303.
Arsenic accumulation in the liver tissue of marine mammals.Crossref | GoogleScholarGoogle Scholar |

[9]  A. Bohn, B. W. Fallis, Metal concentrations (As, Cd, Cu, Fe and Zn) in shorthorn sculpins, Myoxocephalus scorpius (Linnaeus) and Artic char, Salvelinus alpines (Linnaeus) from the vicinity of Strathcona Sound, Northwest Territories. Water Res. 1978, 12, 659.
Metal concentrations (As, Cd, Cu, Fe and Zn) in shorthorn sculpins, Myoxocephalus scorpius (Linnaeus) and Artic char, Salvelinus alpines (Linnaeus) from the vicinity of Strathcona Sound, Northwest Territories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtV2qtLs%3D&md5=d0109434c7ead469ac3f9c6bd9ec64f2CAS |

[10]  F. Paez-Osuna, C. Ruiz-Fernandez, Comparative bioaccumulation of trace metals in Penaeus stylirostris in estuarine and coastal environments. Estuar. Coast. Shelf Sci. 1995, 40, 35.
Comparative bioaccumulation of trace metals in Penaeus stylirostris in estuarine and coastal environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktleiu7g%3D&md5=33fa4df390ae690542455dc0f43eef7aCAS |

[11]  J. S. Edmonds, K. A. Francesconi, The origin and chemical form of arsenic in the school whiting. Mar. Pollut. Bull. 1981, 12, 92.
The origin and chemical form of arsenic in the school whiting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhs1yqsbg%3D&md5=c0bb558815521c2d9a1e8822681a38adCAS |

[12]  W. H. Jeckel, R. R. Roth, L. Ricci, Patterns of trace metal distribution in tissues of Pleoticius muelleri (Crustacea : Decapoda : Solenoceridae). Mar. Biol. 1996, 125, 297.
Patterns of trace metal distribution in tissues of Pleoticius muelleri (Crustacea : Decapoda : Solenoceridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFWqsrY%3D&md5=bb97f6fd967aa6711de56b124e391224CAS |

[13]  W. J. Langston, Availability of arsenic to estuarine and marine organisms: a field and laboratory experiment. Mar. Biol. 1984, 80, 143.
Availability of arsenic to estuarine and marine organisms: a field and laboratory experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1Wksrw%3D&md5=4713731d65bb7fbb8d8d0213e683ca56CAS |

[14]  K. A. Shiomi, A. Shinagawa, T. Igarashi, K. Hirota, H. Yamanaka, T. Kikuchi, Contents and chemical forms of arsenic in shellfishes in connection with their feeding habits. B. Jpn. Soc. Sci. Fish. 1984, 50, 293.
Contents and chemical forms of arsenic in shellfishes in connection with their feeding habits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtFKju7s%3D&md5=d6411b46c5dceab811a71ecccaf283bdCAS |

[15]  W. A. Maher, Distribution of arsenic in marine animals: relationship to diet. Comp. Biochem. Physiol. 1985, 82C, 433.
| 1:CAS:528:DyaL28Xjt1Siuw%3D%3D&md5=01dd07c72b13e554b7b82d1d9513ac61CAS |

[16]  R. Tukai, W. A. Maher, I. J. McNaught, M. J. Ellwood, Occurrence and chemical form of arsenic in marine macroagae from the east coast of Australia. Mar. Freshwater Res. 2002, 53, 971.
Occurrence and chemical form of arsenic in marine macroagae from the east coast of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFamtQ%3D%3D&md5=0813aa91f1ea24de5078553d27f40affCAS |

[17]  M. Berhard, M. O. Andreae, Transport of trace metals in marine food chains, in Changing Metal Cycles and Human Health (Ed. J. O. Nriagu) 1984, pp. 147–167 (Dahlen Konferenzen: Berlin).

[18]  B. Gillanders, Seagrasses, in Marine Ecology (Eds S. D. Connell, B. M. Gillanders) 2007, Chapter 17, pp. 457–477 (Oxford University Press: Melbourne).

[19]  W. Syme, C. Witt, R. Morton, J. Pocock, A. McAlister, Lake Macquarie Estuary Management Plan. Document number 9487.R7.4 1995 (WBM Oceanics Australia: Brisbane, QLD).

[20]  R. Morton, W. Syme, J. Pocock, A. McAlister, C. Rose, Lake Macquarie Estuary Management Study. Volume 2 – Lake Management Issues. Document number 9487.R5.4 1997 (WBM Oceanics Australia: Brisbane, QLD).

[21]  W. Maher, F. Krikowa, J. Kirby, A. T. Townsend, P. Snitch, Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications. Aust. J. Chem. 2003, 56, 103.
Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGnsLk%3D&md5=ae9c0eed4af24528484c993911292b62CAS |

[22]  S. Baldwin, M. Deaker, W. Maher, Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 1994, 119, 1701.
Low-volume microwave digestion of marine biological tissues for the measurement of trace elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVSgtLo%3D&md5=4db91df0f39d3bf98d2af8feb3edb6edCAS |

[23]  W. Maher, S. Forstner, F. Krikowa, P. Snitch, G. Chapple, P. Craig, Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS. J. Anal. At. Spectrom. 2001, 22, 361.
| 1:CAS:528:DC%2BD3MXovVOisbs%3D&md5=9a7e8aabfefbb140566fbe87502f2f46CAS |

[24]  S. Foster, W. Maher, F. Krikowa, S. Apte, A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537.
A microwave-assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFSltA%3D%3D&md5=79bfd88bddb7ba369340105d7d7f09d6CAS |

[25]  J. Kirby, W. Maher, Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 838.
Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKhsbs%3D&md5=46a6b522f70fd4b7cf0210a5b1aac8c2CAS |

[26]  J. Kirby, W. Maher, M. Ellwood, F. Krikowa, Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLC-HG-ICP-MS. Aust. J. Chem. 2004, 57, 957.
Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLC-HG-ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1SjsrY%3D&md5=ec678cbdfb5ab0ae433b06251ca3c722CAS |

[27]  K. R. Clarke, R. M. Warwick, Changes in Marine Communities: an Approach to Statistical Analysis and Interpretation 1994 (Plymouth Marine Laboratory: Plymouth, UK).

[28]  M. Barwick, W. Maher, Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar. Environ. Res. 2003, 56, 471.
Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltl2gsbs%3D&md5=ca8264891838e3eb425df5ca388a78e2CAS |

[29]  P. E. Gibbs, W. J. Langston, G. R. Burt, P. L. Pascoe, Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J. Mar. Biol. Assoc. U. K. 1983, 63, 313.
Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVehtbs%3D&md5=1dbe92a19141e2f86fe169b8fa836077CAS |

[30]  J. Kirby, W. A. Maher, A. Chariton, F. Krikowa, Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl. Organomet. Chem. 2002, 16, 192.
Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Kktbg%3D&md5=94dfb6a457fc5149a0b735971dc53398CAS |

[31]  J. M. Neff, Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917.
| 1:CAS:528:DyaK2sXjtVGrt7Y%3D&md5=8e33201491571094043bb1e79345e2cbCAS |

[32]  E. M. B. Sorensen, Arsenic, in Metal Poisoning in Fish 1991, Chapter 3, pp. 61–82 (CRC Press Inc.: Boca Raton. FL).

[33]  W. A. Maher, S. M. Clarke, The occurrence of arsenic in selected marine macroalgae from two coastal areas of South Australia. Mar. Pollut. Bull. 1984, 15, 111.
The occurrence of arsenic in selected marine macroalgae from two coastal areas of South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1Gktr0%3D&md5=a39490d8b9e5c3bb2ffaa933b6202b97CAS |

[34]  S. Foster, W. Maher, A. Taylor, F. Krikowa, K. Telford, Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environ. Chem. 2005, 2, 177.
Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfK&md5=4b1f2f34c4d36ab9564310e93a60b01dCAS |

[35]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 381.
Arsenic and selected elements in marine angiosperms, south-east coast, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yit7w%3D&md5=6d55eb1fb0ab0ca4c6a67bcea453c90dCAS |

[36]  C. Tu, L. Q. Ma, Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata. Plant Soil 2003, 249, 373.
Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cit78%3D&md5=d619ee8dcae60545daac3aff1770e574CAS |

[37]  K. A. Francesconi, J. S. Edmonds, Arsenic in the sea. Oceanogr. Mar. Biol. 1993, 31, 111.

[38]  L. A. Smock, The influence of feeding habits on whole-body metal concentrations in aquatic insects. Freshw. Biol. 1983, 13, 301.
The influence of feeding habits on whole-body metal concentrations in aquatic insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFajtLg%3D&md5=46df65f3425eef762fafab5a24aee846CAS |

[39]  T. C. Marshall, Fishes of the Great Barrier Reef and Coastal Waters of Queensland 1964 (Angus and Robertson: Brisbane).

[40]  J. J. Burchmore, D. A. Pollard, J. D. Bell, Community structure and trophic relationships of the fish fauna of an estuarine Posidonia australis seagrass habitat in Port Hacking, New South Wales. Aquat. Bot. 1984, 18, 71.
Community structure and trophic relationships of the fish fauna of an estuarine Posidonia australis seagrass habitat in Port Hacking, New South Wales.Crossref | GoogleScholarGoogle Scholar |

[41]  R. H. Kuiter, Coastal Fishes of South-Eastern Australia 1993 (Crawford House Press: Bathurst, NSW).

[42]  J. M. Thomson, Some aspects regarding the ecology of Lake Macquarie, NSW, with regard to the alleged depletion of fish. IX The fishes and their food. Aust. J. Mar. Freshwater Res. 1959, 10, 365.
Some aspects regarding the ecology of Lake Macquarie, NSW, with regard to the alleged depletion of fish. IX The fishes and their food.Crossref | GoogleScholarGoogle Scholar |

[43]  J. J. Burchmore, D. A. Pollard, M. J. Middleton, J. D. Bell, B. C. Pease, Biology of four species of whiting (Pisces : Sillaginidae) in Botany Bay, New South Wales. Aust. J. Mar. Freshwater Res. 1988, 39, 709.
Biology of four species of whiting (Pisces : Sillaginidae) in Botany Bay, New South Wales.Crossref | GoogleScholarGoogle Scholar |

[44]  A. Bohn, Arsenic in marine organisms from West Greenland. Mar. Pollut. Bull. 1975, 6, 87.
Arsenic in marine organisms from West Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlsVegtLo%3D&md5=d8474c3dcccbec47fa2382d012c978f5CAS |

[45]  M. J. Conacher, W. J. R. Lanzing, A. W. D. Larkum, Ecology of Botany Bay. II. Aspects of the feeding ecology of the fanbellied leatherjacket, Monacanthus chiensis (Pisces : Monacanthidae), in Posidonia australis seagrass beds in Quibray Bay, Botany Bay, New South Wales. Aust. J. Mar. Freshwater Res. 1979, 30, 387.
Ecology of Botany Bay. II. Aspects of the feeding ecology of the fanbellied leatherjacket, Monacanthus chiensis (Pisces : Monacanthidae), in Posidonia australis seagrass beds in Quibray Bay, Botany Bay, New South Wales.Crossref | GoogleScholarGoogle Scholar |

[46]  R. Zimmerman, R. Gibson, J. Harrington, Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Mar. Biol. 1979, 54, 41.
Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community.Crossref | GoogleScholarGoogle Scholar |

[47]  K. Hanaoka, S. Tagawa, T. Kaise, The fate of organoarsenic compounds in marine ecosystems. Appl. Organomet. Chem. 1992, 6, 139.
The fate of organoarsenic compounds in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1ajurY%3D&md5=96888ff243b4b9e2ea73185a3bf351fbCAS |

[48]  J. S. Edmonds, K. A. Francesconi, Trimethylarsine oxide in Estuary Catfish (Cnidoglanis bassensis) and School Whiting Sillago bassensis after oral administration of sodium arsenate; and as a natural component of Estuary Catfish. Sci. Total Environ. 1987, 64, 317.
Trimethylarsine oxide in Estuary Catfish (Cnidoglanis bassensis) and School Whiting Sillago bassensis after oral administration of sodium arsenate; and as a natural component of Estuary Catfish.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3mtlegtQ%3D%3D&md5=4356c4b07b8556fe035a8327c746293dCAS |

[49]  J. Kirby, W. Maher, Tissue accumulation of arsenic compounds in three marine fish species: Relationship to trophic position. Appl. Organomet. Chem. 2002, 16, 108.
Tissue accumulation of arsenic compounds in three marine fish species: Relationship to trophic position.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Sku70%3D&md5=7662312305d0a918b9dbf4153d7a00f8CAS |

[50]  T. Kikuchi, Faunal relationships in temperate seagrass beds, in Handbook of Seagrass Biology: an Ecosystem Perspective (Eds R. C. Phillips, C. P. McRoy) 1980, pp. 153–172 (Garland STPM Press: New York).

[51]  W. D. Klumpp, R. K. Howard, D. A. Pollard, Trophodynamics and nutritional ecology of seagrass communities, in Biology of Seagrasses (Eds A. W. D. Larkum, A. J. McComb, S. A. Shepherd) 1989, pp. 394–455 (Elsevier Science Publishing Company: New York).

[52]  S. Khokiattiwong, N. Kornkanitnan, W. Goessler, S. Kokarnig, K. A. Francesconi, Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef. Environ. Chem. 2009, 6, 226.
Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CjurfK&md5=182b06573132a4d1045ea9d18ecc084dCAS |

[53]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Accumulation of arsenic in Yellow-eye Mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Sci. Total Environ. 1989, 79, 59.
Accumulation of arsenic in Yellow-eye Mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsV2gs70%3D&md5=5fccb826566eadeb3429f5707afe2fadCAS |

[54]  H. Amlund, K. A. Francesconi, C. Bethune, A.-K. Lundebye, M. H. G. Berntssen, Accumulation and elimination of dietary arsenobetaine in two species of fish Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) Environ. Toxicol. Chem. 2006, 25, 1787.
Accumulation and elimination of dietary arsenobetaine in two species of fish Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFersbg%3D&md5=f0d1a9e76522264b233340209424c9b7CAS |

[55]  S. Foster, W. A. Maher, Decomposition of arsenoribosides from marine macroalgae in simulated rock pools, in Arsenic in Geosphere and Human Diseases (Eds J. S. Jean, J. Bundschuh, P. Bhattacharya) 2010, pp. 230–232 (CRC Press: Boca Raton, FL).

[56]  K. Shiomi, K. Kakehahi, H. Yamanaka, T. Kikuchi, Identification of arsenobetaine and a tetramethylarsonium salt in the clam Meretrix lusoria. Appl. Organomet. Chem. 1987, 1, 177.
Identification of arsenobetaine and a tetramethylarsonium salt in the clam Meretrix lusoria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjsFSmsg%3D%3D&md5=4d19203e83b84be8ef54b5766d6b10eeCAS |

[57]  M. Morita, Y. Shibata, Speciation of arsenic compounds in marine life by high performance liquid chromatography combined with inductively coupled argon plasma atomic emission spectrometry. Anal. Sci. 1987, 3, 575.
Speciation of arsenic compounds in marine life by high performance liquid chromatography combined with inductively coupled argon plasma atomic emission spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXptlWrtg%3D%3D&md5=ceab91581c2713842c5ae5f9551a89c7CAS |

[58]  E. R. Schmeisser, R. Raml, K. Francesconi, D. Kuehnelt, A. L. Lindberg, C. Sörös, W. Goessler, Thio arsenosugars identified as natural constituents of mussels by liquid chromatography-mass spectrometry. Chem. Commun. (Camb.) 2004, 16, 1824.
Thio arsenosugars identified as natural constituents of mussels by liquid chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[59]  M. Kahn, R. Raml, E. Schmeisser, B. Vallant, K. A. Francesconi, W. Goessler, Two novel thio-arsenosugars in scallops identified with HPLC-ICPMS and HPLC-ESMS. Environ. Chem. 2005, 2, 171.
Two novel thio-arsenosugars in scallops identified with HPLC-ICPMS and HPLC-ESMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfN&md5=227bae8fb3547739415b9d5bf9a6752aCAS |