Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Modelling lead(II) sorption to ferrihydrite and soil organic matter

Jon Petter Gustafsson A D , Charlotta Tiberg B , Abubaker Edkymish A and Dan Berggren Kleja C
+ Author Affiliations
- Author Affiliations

A Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology), SE-100 44 Stockholm, Sweden.

B Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, SE-750 07 Uppsala, Sweden.

C Swedish Geotechnical Institute, Kornhamnstorg 61, SE-111 27 Stockholm, Sweden.

D Corresponding author. Email: gustafjp@kth.se

Environmental Chemistry 8(5) 485-492 https://doi.org/10.1071/EN11025
Submitted: 4 March 2011  Accepted: 25 May 2011   Published: 13 September 2011

Environmental context. Lead(II) is a toxic metal pollutant with many anthropogenic sources. We show that lead(II) is bound more strongly to soil surfaces than previously understood. This knowledge may lead to better models for lead(II) dissolution from the soils, which will improve risk assessments for this metal.

Abstract. Lead(II) adsorption to soil organic matter and iron (hydr)oxides is strong, and may control the geochemical behaviour of this metal. Here, we report the adsorption of Pb2+ (i) to 2-line ferrihydrite, and (ii) to a mor layer. The results showed that ferrihydrite has heterogeneous Pb2+ binding. Use of a surface complexation model indicated that ~1 % of the surface sites adsorbed Pb2+ more strongly than the remaining 99 %. Although only one surface complexation reaction was used (a bidentate complex of the composition (≡FeOH)2Pb+), three classes of sites with different affinity for Pb2+ were needed to simulate Pb2+ binding correctly over all Pb/Fe ratios analysed. For the mor layer, Pb2+ sorption was much stronger than current models for organic complexation suggest. The results could be described by the Stockholm Humic Model when the binding heterogeneity was increased, and when it was assumed that 0.2 % of the binding sites were specific for Pb. Use of revised model parameters for nine Vietnamese soils suggest that lead(II) binding was more correctly simulated than before. Thus, underestimation of lead(II) sorption to both (hydr)oxide surfaces and organic matter may explain the failure of previous geochemical modelling attempts for lead(II).

Additional keywords: binding heterogeneity, CD-MUSIC model, 2-line ferrihydrite, mor layer, Stockholm Humic model.


References

[1]  E. Tipping, Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b691b52d3cb423544a67e094a347a8e7CAS |

[2]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry, and thermodynamic consistency. Colloids Surf. 1999, A151, 147.
Ion binding to natural organic matter: competition, heterogeneity, stoichiometry, and thermodynamic consistency.Crossref | GoogleScholarGoogle Scholar |

[3]  J. P. Gustafsson, Modelling the acid–base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
Modelling the acid–base properties and metal complexation of humic substances with the Stockholm Humic Model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=8007ad69efc9aee1a21cc675f238ecdeCAS |

[4]  J. P. Gustafsson, D. B. Kleja, Modelling salt-dependent proton binding by organic soils with the NICA–Donnan and Stockholm Humic models. Environ. Sci. Technol. 2005, 39, 5372.
Modelling salt-dependent proton binding by organic soils with the NICA–Donnan and Stockholm Humic models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVejuro%3D&md5=bfd54460b738ef7b6f1b65d8e3ab94b3CAS |

[5]  E. Tipping, J. Rieuwerts, G. Pan, M. R. Ashmore, S. Lofts, M. T. R. Hill, M. E. Farago, I. Thornton, The solid-solution partitioning of heavy metals (Cu, Zn, Pb, Cd) in upland soils of England and Wales. Environ. Pollut. 2003, 125, 213.
The solid-solution partitioning of heavy metals (Cu, Zn, Pb, Cd) in upland soils of England and Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gsrw%3D&md5=a50173268ce0e4c5a31ff9c9cb5e1a07CAS |

[6]  J. P. Gustafsson, P. Pechova, D. Berggren, Modelling metal binding to soils: the role of natural organic matter. Environ. Sci. Technol. 2003, 37, 2767.
Modelling metal binding to soils: the role of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsleisbw%3D&md5=a4236efdd5695486fd01329f42071133CAS |

[7]  B. Cancès, M. Ponthieu, M. Castrec-Rouelle, E. Aubry, M. F. Benedetti, Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 2003, 113, 341.
Metal ions speciation in a soil and its solution: experimental data and model results.Crossref | GoogleScholarGoogle Scholar |

[8]  J. D. MacDonald, W. H. Hendershot, Modelling trace metal partitioning in forest floors of northern soils near metal smelters. Environ. Pollut. 2006, 143, 228.
Modelling trace metal partitioning in forest floors of northern soils near metal smelters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Ols7w%3D&md5=fc9a06f892cdb3564ff746ae719854b3CAS |

[9]  L. P. Weng, E. J. M. Temminghoff, S. Lofts, E. Tipping, W. H. van Riemsdijk, Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 2002, 36, 4804.
Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnsl2iu7w%3D&md5=1433b8dd7162134a657bc86587c080b9CAS |

[10]  M. Linde, I. Öborn, J. P. Gustafsson, Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water Air Soil Pollut. 2007, 183, 69.
Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFart7Y%3D&md5=0dd544cf9389a027b61b42262a328fdcCAS |

[11]  N. M. Khai, I. Öborn, S. Hillier, J. P. Gustafsson, Modelling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater. Chemosphere 2008, 70, 1338.
Modelling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2ksw%3D%3D&md5=656a675b9a926a8d4feda3cbe640f88eCAS |

[12]  L. T. C. Bonten, J. E. Groenenberg, L. P. Weng, W. H. van Riemsdijk, Use of speciation and complexation models to estimate heavy metal sorption in soils Geoderma 2008, 146, 303.
Use of speciation and complexation models to estimate heavy metal sorption in soilsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVKqurw%3D&md5=2eb7888908ee4ba298253a79a45b8371CAS |

[13]  T. Hiemstra, W. H. van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488.
A surface structural approach to ion adsorption: the charge distribution (CD) model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFOjur0%3D&md5=03b6ce579a547ea8f25342676c567b2eCAS |

[14]  D. A. Dzombak, F. M. M. Morel, Surface Complexation Modelling: Hydrous Ferric Oxide 1990 (Wiley: New York).

[15]  E. Tipping, A. J. Lawlor, S. Lofts, L. Shotbolt, Simulating the long-term chemistry of an upland UK catchment: heavy metals. Environ. Pollut. 2006, 141, 139.
Simulating the long-term chemistry of an upland UK catchment: heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1WgsbY%3D&md5=c9ad4170ad5752dd9f8ecee294dc753eCAS |

[16]  L. P. Weng, E. J. M. Temminghoff, W. H. van Riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001, 35, 4436.
Contribution of individual sorbents to the control of heavy metal activity in sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGru74%3D&md5=2972e7194877820e16a72116f39a862cCAS |

[17]  C. Lamelas, F. Avaltroni, M. Benedetti, K. J. Wilkinson, V. I. Slaveykova, Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules 2005, 6, 2756.
Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynsL4%3D&md5=78b0a6ec655de04cb054608b041be95aCAS |

[18]  R. P. Dhakal, K. N. Ghimire, K. Inoue, Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy 2005, 79, 182.
Adsorptive separation of heavy metals from an aquatic environment using orange waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCrs7zM&md5=1d48ff4422a320ad9a9060a0935b53b6CAS |

[19]  K. Conrad, H. C. B. Hansen, Sorption of zinc and lead on coir. Bioresour. Technol. 2007, 98, 89.
Sorption of zinc and lead on coir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVCitrk%3D&md5=6516ea92b35b14a1596b050ca949b7bcCAS |

[20]  J. R. Bargar, G. E. Brown, G. A. Parks, Surface complexation of PbII at oxide-water interfaces: II. XAFS and bond-valence determination of mononuclear PbII sorption products and surface functional groups on iron oxides. Geochim. Cosmochim. Acta 1997, 61, 2639.
Surface complexation of PbII at oxide-water interfaces: II. XAFS and bond-valence determination of mononuclear PbII sorption products and surface functional groups on iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVamsLk%3D&md5=6e2d80bf80eb3990151a17f97e4f353dCAS |

[21]  P. Trivedi, J. A. Dyer, D. L. Sparks, Lead sorption onto ferrihydrite: 1. A macroscopic and spectroscopic assessment. Environ. Sci. Technol. 2003, 37, 908.
Lead sorption onto ferrihydrite: 1. A macroscopic and spectroscopic assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovF2mug%3D%3D&md5=9366588003e56a8e74b057a028ca6e5aCAS |

[22]  Y. Xu, T. Boonfueng, L. Axe, S. Maeng, T. Tyson, Surface complexation of PbII on amorphous iron oxide and manganese oxide: spectroscopic and time studies. J. Colloid Interface Sci. 2006, 299, 28.
Surface complexation of PbII on amorphous iron oxide and manganese oxide: spectroscopic and time studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVWqtL8%3D&md5=bb621ad977ed9afb4883ffbe83ef9912CAS |

[23]  A. S. Templeton, A. M. Spormann, G. E. Brown, Speciation of PbII sorbed by Burkholderia cepacia/Goethite composites. Environ. Sci. Technol. 2003, 37, 2166.
Speciation of PbII sorbed by Burkholderia cepacia/Goethite composites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Kgu78%3D&md5=d6e6d8bdcf588fbdd9ed96d66d2de682CAS |

[24]  M. M. Benjamin, J. O. Leckie, Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. J. Colloid Interface Sci. 1981, 79, 209.
Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjs12muw%3D%3D&md5=f5bb9c6fc833ce9cb7454e74ff4cd189CAS |

[25]  M. M. Benjamin, J. O. Leckie, Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces. Environ. Sci. Technol. 1982, 16, 162.
Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtFSksbk%3D&md5=13ae6ffdfba3d2b1dbaeae4809107165CAS |

[26]  P. J. Swedlund, J. G. Webster, G. M. Miskelly, The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd: ternary complexes and site heterogeneity. Appl. Geochem. 2003, 18, 1671.
The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd: ternary complexes and site heterogeneity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSlurs%3D&md5=4b663ed8d981b6608b4637b6ba89bab3CAS |

[27]  M. Ponthieu, F. Juillot, T. Hiemstra, W. H. van Riemsdijk, M. F. Benedetti, Metal ion binding to iron oxides. Geochim. Cosmochim. Acta 2006, 70, 2679.
Metal ion binding to iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFyrsrk%3D&md5=7e55c11f85b8118f889ab0b6d95a9457CAS |

[28]  P. J. Swedlund, J. G. Webster, Adsorption and polymerization of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 1999, 33, 3413.
Adsorption and polymerization of silicic acid on ferrihydrite, and its effect on arsenic adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsleqtLg%3D&md5=8184a35f43f9ac7eb8b563e5e5647517CAS |

[29]  U. Schwertmann, U. R. M. Cornell, Iron oxides in the laboratory. Preparation and characterization 2000 (Wiley: Weinheim, Germany).

[30]  J. P. Gustafsson, Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 2003, 200, 105.
Modelling molybdate and tungstate adsorption to ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlGhtrs%3D&md5=5429e261c1f2bd3ec4a943a4432787bcCAS |

[31]  J. P. Gustafsson, I. Persson, D. B. Kleja, J. W. J. van Schaik, Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ. Sci. Technol. 2007, 41, 1232.
Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVCgug%3D%3D&md5=e9b5e17fcc87ce0547875cb35a6c631bCAS |

[32]  J. P. Gustafsson, J. W. J. van Schaik, Cation binding in a mor layer. Batch experiments and modelling. Eur. J. Soil Sci. 2003, 54, 295.
Cation binding in a mor layer. Batch experiments and modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFGqtL0%3D&md5=10352a5cc5462d0dc6815902841340d1CAS |

[33]  J. P. Gustafsson, E. Dässman, M. Bäckström, Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite. Appl. Geochem. 2009, 24, 454.
Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFyqs70%3D&md5=8ba0d68d48dd3e6ad13ea79c76e56996CAS |

[34]  T. Hiemstra, W. H. van Riemsdijk, A surface structural model for ferrihydrite. I. Sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta 2009, 73, 4423.
A surface structural model for ferrihydrite. I. Sites related to primary charge, molar mass, and mass density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKksb8%3D&md5=5088973a78964c63637d7730b2d53e8dCAS |

[35]  F. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips, J. B. Parise, The structure of ferrihydrite, a nanocrystalline material. Science 2007, 316, 1726.
The structure of ferrihydrite, a nanocrystalline material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1WgsLo%3D&md5=d1f9e1885319e9ca815f5a55aa5d4c5aCAS |

[36]  F. M. Michel, V. Barrón, J. Torrent, M. P. Morales, C. J. Serna, J. F. Boily, Q. Liu, A. Ambrosini, A. C. Cismasu, G. E. Brown, Ordered ferromagnetic form of ferrihydrite reveals links among structure, composition, and magnetism. Proc. Natl. Acad. Sci. USA 2010, 107, 2787.
Ordered ferromagnetic form of ferrihydrite reveals links among structure, composition, and magnetism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Clsbg%3D&md5=5802c1370edd6772dd8225c8cd4a0b11CAS |

[37]  J. P. Gustafsson, Visual MINTEQ ver. 3.0. 2010. Available at http://www2.lwr.kth.se/English/OurSoftware/vminteq/index.htm [Verified 7 July 2011].

[38]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA–Donnan parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA–Donnan parameters for metal-ion binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=7a79fef017f01ff26409f082104dfbfbCAS |

[39]  J. J. Dijkstra, J. C. L. Meeussen, R. N. J. Comans, Leaching of heavy metals from contaminated soils: an experimental and modelling study. Environ. Sci. Technol. 2004, 38, 4390.
Leaching of heavy metals from contaminated soils: an experimental and modelling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltl2mtrg%3D&md5=fd6c65e8ce1472bd66f1e0c3722f1bf2CAS |

[40]  T. Hiemstra, W. H. van Riemsdijk, Surface structure and ion complexation of oxide-solution interfaces, in Encyclopedia of Surface and Colloid Science (Eds P. Somasundaran and A. Hubbard) 2006, pp. 5979–6004 (Taylor & Francis: New York).

[41]  C. Sjöstedt, J. P. Gustafsson, S. J. Köhler, Chemical equilibrium modelling of organic acids, pH, aluminum and iron in Swedish surface waters. Environ. Sci. Technol. 2010, 44, 8587.
Chemical equilibrium modelling of organic acids, pH, aluminum and iron in Swedish surface waters.Crossref | GoogleScholarGoogle Scholar |