Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsenic distribution and species in two Zostera capricorni seagrass ecosystems, New South Wales, Australia

William A. Maher A C , Simon D. Foster A , Anne M. Taylor A , Frank Krikowa A , Elliot G. Duncan A and Anthony A. Chariton B
+ Author Affiliations
- Author Affiliations

A EcoChemistry Laboratory, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia.

B CSIRO Land and Water, Private Bag 2007, Kirrawee, NSW 2232, Australia.

C Corresponding author. Email: bill.maher@canberra.edu.au

We dedicate this paper to the memory of the late Professor Kaise in recognition of his lifelong work on environmental arsenic chemistry.

Environmental Chemistry 8(1) 9-18 https://doi.org/10.1071/EN10087
Submitted: 29 July 2010  Accepted: 10 November 2010   Published: 28 February 2011

Environmental context. Arsenic concentrations and species were determined in seagrass ecosystems where the food web was established using carbon and nitrogen isotopes. There was a clear increase in the proportion of arsenobetaine in tissues of higher trophic level organisms, which is attributed to an increasing arsenobetaine content of the diet and the more efficient assimilation and retention of arsenobetaine over other arsenic species. The results provide an explanation for the prominence of arsenobetaine in higher marine animals.

Abstract. Arsenic concentrations and species were compared in biota from two Zostera capricorni ecosystems. Mean arsenic concentrations were not significantly different for non‐vegetative sediment, rhizosphere sediment, Z. capricorni blades, roots, rhizomes, epiphytes, amphipods, polychaetes, molluscs, crustaceans and fish, but were significantly different in detritus. Sediments and plant tissues contained mostly inorganic arsenic and PO4–arsenoriboside. Detritus contained mostly PO4–arsenoriboside. Fish tissues contained predominately arsenobetaine. Other animals had lower proportions of arsenobetaine and variable quantities of minor arsenic species. Bioconcentration but not biomagnification of arsenic is occurring with no evidence of arsenic hyper accumulation. The proportion of arsenobetaine increases through the food web and is attributed to a shift from a mixed diet at lower trophic levels to animals containing mostly arsenobetaine at higher trophic levels and the more efficient retention of arsenobetaine, compared to other arsenic species.

Additional keywords: arsenic occurrence, biomagnification, biotransference, C and N isotopes, food web, speciation.


References

[1]  W. Maher, G. Batley, Organometallics in the near shore marine environment of Australia. Appl. Organomet. Chem. 1990, 4, 419.
Organometallics in the near shore marine environment of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXns1CntQ%3D%3D&md5=bbd868f278203385822beebe28dbfd26CAS |

[2]  W. A. Maher, Arsenic in coastal waters of South Australia. Water Res. 1985, 19, 933.
Arsenic in coastal waters of South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlt1yls7o%3D&md5=5d830eda5a490518d61bc84d4661176dCAS |

[3]  J. Kirby, W. A. Maher, A. Chariton, F. Krikowa, Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl. Organomet. Chem. 2002, 16, 192.
Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Kktbg%3D&md5=33297164000dfe599be6337b5a5f4c05CAS |

[4]  V. Nischwitz, S. A. Pergantis, Optimisation of an HPLC selected reaction monitoring electrospray tandem mass spectrometry method for the detection of 50 arsenic species. J. Anal. At. Spectrom. 2006, 21, 1277.
Optimisation of an HPLC selected reaction monitoring electrospray tandem mass spectrometry method for the detection of 50 arsenic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaksbjE&md5=33e62c1e988b9e69a5804229d6693041CAS |

[5]  R. Tukai, W. A. Maher, I. J. McNaught, M. J. Ellwood, Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshwater Res. 2002, 53, 971.
Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFamtQ%3D%3D&md5=9788ec2c4c4fc1d713e759398b07d8aeCAS |

[6]  K. A. Francesconi, J. S. Edmonds, Arsenic species in marine samples. Croat. Chem. Acta 1998, 71, 343..

[7]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in marine angiosperms, south‐east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 381.
Arsenic and selected elements in marine angiosperms, south‐east coast, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1yit7w%3D&md5=587e9d4ac92af1d380ba63534f2a027dCAS |

[8]  S. Foster, W. Maher, A. Taylor, F. Krikowa, K. Telford, Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environ. Chem. 2005, 2, 177.
Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfK&md5=8cb9251b4694b5fe803a16feb9affdccCAS |

[9]  D. Morrisey, Estuaries, in Coastal Marine Ecology of Temperate Australia (Eds A. J. Underwood, M. G. Chapman) 1995, pp. 152–170 (University of New South Wales Press: Sydney).

[10]  M. J. Conacher, W. J. R. Lanzing, A. W. D. Larkham, Ecology of Botany Bay: aspects of the feeding of the fanbellied leatherjacket, Monacanthus chinesis (Pisces : Monacanthisdae) in Posidonia australis seagrass beds in Quibray Bay, Botany Bay New South Wales. Mar. Freshwater Res. 1979, 30, 387.
Ecology of Botany Bay: aspects of the feeding of the fanbellied leatherjacket, Monacanthus chinesis (Pisces : Monacanthisdae) in Posidonia australis seagrass beds in Quibray Bay, Botany Bay New South Wales.Crossref | GoogleScholarGoogle Scholar |

[11]  P. Jernakoff, J. Nielsen, Plant–animal associations in two species of seagrasses in Western Australia. Aquat. Bot. 1998, 60, 359.
Plant–animal associations in two species of seagrasses in Western Australia.Crossref | GoogleScholarGoogle Scholar |

[12]  D. A. Trautman, M. A. Borowitzka, Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar. Ecol. Prog. Ser. 1999, 179, 215.
Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology.Crossref | GoogleScholarGoogle Scholar |

[13]  R. Zimmerman, R. Gibson, J. Harrington, Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Mar. Biol. 1979, 54, 41.
Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community.Crossref | GoogleScholarGoogle Scholar |

[14]  R. E. Thresher, P. D. Nichols, J. S. Gunn, B. D. Bruce, D. M. Furlani, Seagrass detritus as the basis of a coastal planktonic food chain. Limnol. Oceanogr. 1992, 37, 1754.
Seagrass detritus as the basis of a coastal planktonic food chain.Crossref | GoogleScholarGoogle Scholar |

[15]  N. Sturaro, S. Caut, S. Gobert, J.‐M. Bouquengneau, G. Lepoint, Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter. Mar. Biol. 2010, 157, 237.
Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter.Crossref | GoogleScholarGoogle Scholar |

[16]  M. Barwick, W. Maher, Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar. Environ. Res. 2003, 56, 471.
Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltl2gsbs%3D&md5=b08c4b5a5f979ddcbe2cc84b55b90a7aCAS | 12860434PubMed |

[17]  C. Tu, L. Q. Ma, Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata L. Plant Soil 2003, 249, 373.
Effects of arsenate and phosphate on their accumulation by an arsenic hyperaccumulator Pteris vittata L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1Cit78%3D&md5=dae5be51b7890a1bc1e157ff7403abc3CAS |

[18]  C. Slater, T. Preston, L. T. Weaver, Stable isotopes and the international system of units. Rapid Commun. Mass Spectrom. 2001, 15, 1270.
Stable isotopes and the international system of units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVCnt7k%3D&md5=abe7302a040f82a018e278b2a86f45d3CAS | 11466782PubMed |

[19]  S. Foster, W. Maher, E. Schmeisser, A. Taylor, F. Krikowa, S. Apte, Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited. Environ. Chem. 2006, 3, 304.
Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVaksr4%3D&md5=bd7ee48268e9cee8637a641e0958a660CAS |

[20]  W. Maher, F. Krikowa, J. Kirby, A. T. Townsend, P. Snitch, Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications. Aust. J. Chem. 2003, 56, 103.
Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslGnsLk%3D&md5=40dbf772a7ccad90aaa32a7b216d453fCAS |

[21]  S. Baldwin, M. Deaker, W. Maher, Low‐volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 1994, 119, 1701.
Low‐volume microwave digestion of marine biological tissues for the measurement of trace elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVSgtLo%3D&md5=bbf0683f69baff907367760d19ea90eeCAS | 7978323PubMed |

[22]  W. Maher, S. Forstner, F. Krikowa, P. Snitch, G. Chapple, P. Craig, Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS. J. Anal. At. Spectrom. 2001, 22, 361..

[23]  M. J. Ellwood, W. Maher, Measurement of arsenic species in marine sediments by high‐performance liquid chromatography‐inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2003, 477, 279.
Measurement of arsenic species in marine sediments by high‐performance liquid chromatography‐inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVWku78%3D&md5=b17bac46134a42885745b1ab135df736CAS |

[24]  J. Kirby, W. Maher, Measurement of water‐soluble arsenic species in freeze‐dried marine animal tissues by microwave‐assisted extraction and HPLC‐ICP‐MS. J. Anal. At. Spectrom. 2002, 17, 838.
Measurement of water‐soluble arsenic species in freeze‐dried marine animal tissues by microwave‐assisted extraction and HPLC‐ICP‐MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVKhsbs%3D&md5=489cf3bc4d8e2512f2071f100d8d2e5aCAS |

[25]  K. R. Clarke, R. M. Warwick, Changes in Marine Communities: an Approach to Statistical Analysis and Interpretation 1994 (Plymouth Marine Laboratory: Plymouth).

[26]  S. Dubois, B. Jean‐Louis, B. Bertrand, S. Lefebvre, Isotope trophic‐step fractionation of suspension‐feeding species: implications for food partitioning in coastal ecosystems. J. Exp. Mar. Biol. Ecol. 2007, 351, 121.
Isotope trophic‐step fractionation of suspension‐feeding species: implications for food partitioning in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

[27]  R. L. France, Carbon‐13 enrichment in benthic compared to planktonic algae: food web implications. Mar. Ecol. Prog. Ser. 1995, 124, 307.
Carbon‐13 enrichment in benthic compared to planktonic algae: food web implications.Crossref | GoogleScholarGoogle Scholar |

[28]  J. Waring, W. Maher, Arsenic bioaccumulation and species in marine polychaeta. Appl. Organomet. Chem. 2005, 19, 917.
Arsenic bioaccumulation and species in marine polychaeta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFCjur8%3D&md5=3df8ad0723cec1f0a0fc51fa8002d3b3CAS |

[29]  G. J. Edgar, C. Shaw, The production and trophic ecology of shallow‐water fish assemblages in Southern Australia. II. Diet of fishes and trophic relationships between fishes and benthos at Western Port, Victoria. J. Exp. Mar. Biol. Ecol. 1995, 194, 83.
The production and trophic ecology of shallow‐water fish assemblages in Southern Australia. II. Diet of fishes and trophic relationships between fishes and benthos at Western Port, Victoria.Crossref | GoogleScholarGoogle Scholar |

[30]  K. L. Heck, J. F. Valentine, Plant‐herbivore interactions in seagrass meadows. J. Exp. Mar. Biol. Ecol. 2006, 330, 420.
Plant‐herbivore interactions in seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

[31]  J. D. Bell, J. J. Burchmore, D. A. Pollard, Feeding ecology of three sympatric species of leatherjackets (Pisces : Monacanthidae) from a Posidonia seagrass habitat in New South Wales. Aust. J. Mar. Freshwater Res. 1978, 29, 631.
Feeding ecology of three sympatric species of leatherjackets (Pisces : Monacanthidae) from a Posidonia seagrass habitat in New South Wales.Crossref | GoogleScholarGoogle Scholar |

[32]  D. I. Walker, Wm. J. Woelkerling, Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia. Mar. Ecol. Prog. Ser. 1988, 43, 71.
Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Knsb0%3D&md5=97c2e07bb7386bd257eef3be571e0117CAS |

[33]  A. Gupta, Heavy metals in water, periphtonic algae, detritus and insects from two streams in Shillong, north‐eastern India. Environ. Monit. Assess. 1996, 40, 215.
Heavy metals in water, periphtonic algae, detritus and insects from two streams in Shillong, north‐eastern India.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFWgtL4%3D&md5=897d1468fed4cc76ee8ccacfdad90b93CAS |

[34]  P. E. Gibbs, W. J. Langston, G. R. Burt, P. L. Pascoe, Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic. J. Mar. Biol. Assoc. U.K. 1983, 63, 313.
Tharyx marioni (Polychaeta): a remarkable accumulator of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVehtbs%3D&md5=2683f958528a2d7dbb1ed795e108c15bCAS |

[35]  J. Waring, W. Maher, S. Foster, F. Krikowa, Occurrence and speciation of arsenic in common Australian coastal polychaetes species. Environ. Chem. 2005, 2, 108.
Occurrence and speciation of arsenic in common Australian coastal polychaetes species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVChs70%3D&md5=751bf6e176812ea4140a6aa430c45bcaCAS |

[36]  K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms. Adv. Inorg. Chem. 1996, 44, 147.
Arsenic and marine organisms.Crossref | GoogleScholarGoogle Scholar |

[37]  J. M. Guerra‐García, A. Ruiz‐Tabares, E. Baeza‐Rojano, M. P. Cabezas, J. J. Díaz‐Pavón, I. Pacios, M. Maestre, A. R. González, F. Espinosa, J. C. García‐Gómez, Trace metals in Caprella (Crustacea : Amphipoda). A new tool for monitoring pollution in coastal areas. Ecol. Indic. 2010, 10, 734.
Trace metals in Caprella (Crustacea : Amphipoda). A new tool for monitoring pollution in coastal areas.Crossref | GoogleScholarGoogle Scholar |

[38]  J. Kirby, W. Maher, Tissue accumulation of arsenic compounds in three marine fish species: relationship to trophic position. Appl. Organomet. Chem. 2002, 16, 108.
Tissue accumulation of arsenic compounds in three marine fish species: relationship to trophic position.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Sku70%3D&md5=d7381ad0330d2f17149d15b20e3e5c60CAS |

[39]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Accumulation of arsenic in yellow eye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Sci. Total Environ. 1989, 79, 59.
Accumulation of arsenic in yellow eye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsV2gs70%3D&md5=89bb8d8cc670ab090f539be5ee800e1dCAS | 2928771PubMed |

[40]  T. P. Williams, J. M. Bubb, J. N. Lester, Metal accumulation within saltmarsh environments: a review. Mar. Pollut. Bull. 1994, 28, 277.
Metal accumulation within saltmarsh environments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFKrtLw%3D&md5=412cf159432ae524408503cea17e9e08CAS |

[41]  E. R. Schmeisser, R. Raml, K. Francesconi, D. Kuehnelt, A. L. Lindberg, C. Sörös, W. Goessler, Thioarsenosugars identified as natural constituents of mussels by liquid chromatography‐mass spectrometry. Chem. Commun. 2004, 16, 1824.
Thioarsenosugars identified as natural constituents of mussels by liquid chromatography‐mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[42]  M. Kahn, R. Raml, E. Schmeisser, B. Vallant, K. A. Francesconi, W. Goessler, Two novel thio‐arsenosugars in scallops identified with HPLC‐ICPMS and HPLC‐ESMS. Environ. Chem. 2005, 2, 171.
Two novel thio‐arsenosugars in scallops identified with HPLC‐ICPMS and HPLC‐ESMS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfN&md5=6a94017eb08dd247be2f87d0dc4434e0CAS |

[43]  N. R. Loneragan, S. E. Bunnand, D. M. Kellaway, Are mangroves and seagrass sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable–isotope study. Mar. Biol. 1997, 130, 289.
Are mangroves and seagrass sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable–isotope study.Crossref | GoogleScholarGoogle Scholar |