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Environmental context. Polyfluoroalkyl compounds are used in a variety of industrial and consumer appli-
cations, including polymer production and for surface treatment of textiles and paper. Research over the last
10 years has shown that these compounds are ubiquitous environmental contaminants — they are extremely
persistent, show toxic effects and accumulate in the food chain. We evaluate global, temporal and spatial trends
of these important emerging contaminants.

Abstract. This review gives an overview of existing knowledge of polyfluoroalkyl compounds (PFCs) in humans and
in marine biota. Temporal trends and spatial distribution of PFCs were globally compared in humans, marine mammals,
seabirds and fish. In general, PFC concentrations in the environment have increased significantly from the beginning of the
production up to the 1990s. After the phase-out of perfluorooctane sulfonyl fluoride (POSF) production starting in 2000,
PFC concentrations in humans generally decreased. In marine biota no clear temporal trends were observed. The temporal
trends depended on the species, their trophic levels and the geographical locations. PFC patterns in humans and in marine
wildlife species were compared regarding perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), their shorter
and longer chain homologues (C4—C;s) and precursor compounds. Finally knowledge gaps were identified and

recommendations for future work were presented.

Introduction

Polyfluoroalkyl compounds (PFCs) comprise a large group of
industrial chemicals, consisting of a hydrophobic alkyl chain
with a hydrophilic functional group. The alkyl chain is partly or
fully fluorinated and typically contains between 4 and 18 carbon
atoms. As a result PFCs are surface active substances which
repel water, grease and dirt and are therefore used as detergents
or impregnating agents for surface treatment in carpets, textiles,
leather and paper, in polymer production, in fire-fighting foams,
in cosmetics and cleaning agents as well as in numerous other
industrial and consumer applications. PFCs have been indust-
rially manufactured for over 50 years. The global production
increased from about a few hundreds of tonnes in the beginning
of the 1970s up to several thousands of tonnes in the 1990s.!"!
Nowadays PFCs are detected everywhere in the environment
even in remote regions like the Arctic and the Antarctic. They
are regarded as a new and emerging class of environmental
contaminants because of their persistence, their toxic properties
and their bioaccumulative potential.

The major manufacturer of perfluorooctyl sulfonyl fluoride
(POSF), the 3M Co., phased out the production of perfluoro-
octane sulfonate (PFOS), perfluorooctanoate (PFOA) and PFOS
related products between 2000 and 2002 (see http://www.pops.
int/documents/meetings/poprc/submissions/comments_2006/
3M.doc, accessed 10 December 2010). Nevertheless, PFOS,
PFOA and a variety of related PFCs are still being produced by
other manufacturers in several countries of Europe and Asia
and in the USA.M"?! In the following years stewardship
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programs and statutory regulations have been discussed and
announced to achieve reduction in facility emissions and
product contents (see http://www.epa.gov/oppt/pfoa/pubs/stew-
ardship/index.html, accessed 10 December 2010).5]

Regarding the environmental impact of PFCs, the OSPAR
commission (an international cooperation on environmental
protection in the North-East Atlantic) published a list contain-
ing seventeen PFC substances that potentially fulfil the OSPAR
criteria.! Those criteria include that the substances are a threat
to the aquatic environment, show strong indications of risks for
the marine environment, have been found widespread in one or
more compartments of the maritime area and may endanger
human health via consumption of food from the marine
environment (http://www.ospar.org/content/content.asp?menu=
00120000000070_000000_00#hazardous, accessed 10 Decem-
ber 2010). PFOS is considered to be a PBT substance (P,
persistent; B, bioaccumulative; T, toxic) according to the
criteria of the European Commission Technical Guidance
Document on risk assessment. Furthermore, PFOS fulfils
the criteria for persistent organic pollutants (POPs) of the
Stockholm Convention. Thus in 2009, PFOS and its salts were
classified as POPs in terms of the Stockholm Convention.!”’

In 2006, an extensive review was published about biological
monitoring of PFCs.[®! This data compilation confirmed that
PFCs were globally distributed and their concentrations in biota
were higher close to industrialised and urbanised regions than
in remote regions. Longer chain PFCs (with more than eight
C-atoms) can biomagnify through the food webs, reaching
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elevated values in higher trophic species. A recently published
review of levels and trends of PFCs confirmed and upgraded
those studies with special regard to the arctic environment.!”?

During the 1990s, PFOS concentrations in wildlife increased.
Contrary to the expectation, the temporal trends in humans did
not correlate with the trends in wildlife, but PFOS concentra-
tions in humans reached a plateau in industrialised countries at
the end of the 1980s. As a consequence of the conclusions by
Houde et al.t) it could be theorised that the phase-out of POSF-
based products ca. 2001 should lead to a decrease in PFC
concentration in the environment, but there had not been any
evidence.

Based on these findings it was the aim of this review to
investigate spatial and temporal trends of PFC concentrations in
marine biota with particular attention to the time since the initial
phase-out of POSF in 2000. In addition, trend data of biota were
compared to PFC concentrations in human blood.

It is known that manufacturers replaced PFOS, PFOA and
related compounds by shorter chain PFCs with four or six
C-atoms instead of eight. Therefore the PFC pattern in biota
should have changed since 2000. Furthermore, the occurrence
and trends of PFOS precursor substances as well as longer chain
PFCs with more than eight C-atoms were reviewed. Overall, in
this study we have summarised trend data for PFCs and their
pattern in biota from articles published up to March 2010.

Analytical challenges

It is important to note that analyses of PFCs in biota at low
concentration levels pose a significant analytical challenge.
Over the time analytical methods and quality assurance were
improved. High performance liquid chromatography tandem
mass spectrometry (HPLC-MS/MS) combined with electro-
spray ionisation is the most common method to analyse PFCs
in biota. However, it can lead to signal enhancement or signal
suppression due to matrix effects.’> 1% In 2009, it was reported
that routine analytical methods are prone to overestimate per-
fluorohexane sulfonate (PFHxS) concentrations in human blood
because of co-eluting endogenous steroid sulfates that share
common fragmentation pathways.!'"! Matrix-matched calibra-
tion curves regardless of extraction procedure lead to acceptable
PFC quantitation in biota.'"?) Based on the results of two
worldwide interlaboratory method evaluation studies on water,
fish and human blood carried out in 2005 and in 2007, it is
recommended to use mass-labelled internal standards and well
defined native standards for quantification of PFCs in biota
and to minimise matrix effects by an appropriate clean-up.['>'%]
Interlaboratory camparison studies of the determination of PFCs
in human blood carried out in 2005 and 2006 led to the con-
clusion that laboratories, which possess appropriate instru-
mentation, use a well adapted sample preparation, have access
to native and labelled standard compounds and the necessary
experience, are capable of determining the most prevalent PFCs
in human blood with sufficient accuracy and precision.!']
However, because of the problems in analytical determination
data for comparison and evaluation of PFC concentrations in
biota should be interpreted with caution in this overview.
There are a lot of reports regarding the concentrations of
PFCs in biota, most of them concerning mammals, fish, birds,
humans and their related food webs. Comparison of these data
is difficult because of possible analytical issues and different
biological tissues used for PFC analysis. For small animals
(e.g. invertebrates or fish) the whole body tissue is usually
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homogenised before analysis, for larger animals (e.g. birds or
marine mammals) only their organs, especially liver, were
analysed. Thus, a comparison of the PFC concentrations in the
whole body or different organs is difficult, because the tissue
distribution was investigated only in a few species.[!”"!¥]

Some authors published data about PFC concentrations in
blood. They reported that PFOS concentrations in blood were
lower than those in liver..'® %) Already in 1979 studies in rats
showed that PFOS is well absorbed orally and accumulates
primarily in the liver and, to a lesser extent, in the serum or
plasma.®" In contrast, some studies resulted in highest values in
blood and lower values in liver.**! A study on 78 fish samples
from different regions of Japan showed large variations in the
ratios of PFOS concentrations between liver and blood sam-
ples.?*! The reason may be a disequilibrium of PFOS between
liver and blood, possibly indicating an ongoing exposure of fish
to PFOS. However, in spite of this inconsistency blood is a
useful matrix for monitoring PFCs in living animals or humans.
Another important aspect is that three different types of blood
were chosen for PFC analysis: whole blood, blood serum
obtained from whole blood after clotting and blood plasma,
which comprises 55% of the blood fluid. In general, PFOS
concentrations were higher in plasma or in serum than in whole
blood.?**! For the purpose of comparison some authors con-
verted whole-blood data to a serum basis by multiplying the
whole-blood concentration by a factor of 272°! or by a factor of
2.5.12*1 Another study found serum to plasma ratios for PFOS,
PFHxS and PFOA of 1: 1 and serum or plasma to whole blood
ratios of 2 : 1.27) Thus, PFC concentrations determined in serum
or plasma are directly comparable, whereas the whole blood
data have to be multiplied by a minimum factor of 2, if they have
to be compared to serum or plasma data. Different results were
published by Kirrman et al.**! They found plasma to whole
blood ratios of less than 2. In this survey a factor of 2 was
applied, if conversion was necessary.

Levels and trends in humans

Temporal trends and spatial distribution of PFCs
in human blood

In most reports blood was used to study temporal trends in
humans. In 2009, a review summarised human biomonitoring
data of PFC levels in human blood, breast milk and human tis-
sues as well as in air, dust, drinking water and food with regard to
relevance for human exposure.”® Highest concentrations of
PFCs were found in blood of occupationally exposed workers at
four production facilities, documented by the two major pro-
ducers, the 3M Co. and DuPont, for the years 1995-2004.
Over a period of 5 years (1995-2000), PFOS concentration in
serum decreased from 2440 pgL ™" (n=90) to ~1290 pg L~
(n = 188) in the factory in Decatur (USA) and from 1930 pg L~
(n=93) to 950 ugL™" (n=196) in Antwerp (Belgium). For
PFOA the highest value was 6800 ugL™" (n=80) in 1995 in
Cottage Grove (USA). It decreased to 4300 ugL ™' (n=238) in
2002. In contrast, in Antwerp the PFOA concentration in serum
increased from 1130 ugL’1 (n=93) in 1995 to 2630 ugL’1
(n=30) in 2003.128!

The temporal trend of PFCs in blood of the general popula-
tion in the USA was analysed on the basis of blood samples
from Washington County, Maryland, collected in the years
1974 (n=178), 1989 (n=178) and 2001 (n=104).5%31
PFOS data showed an increase during this period of time
(from 29.5 to 35.7 ug L™ "). PFOA, PFHxS and perfluorooctane
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Fig. 1. Temporal trends of PFOS, PFOA and PFHxS in human blood of the general USA population, data adapted

from Olsen et al.***?! and Calafat et al.****! and estimated total global POSF production volumes, adapted from
Paul et al.! 1999-2000, CDC NHANES, n = 9282 serum samples, geometric mean, >12 years of age; 200001,
American Red Cross, n =645 serum samples, median, 20—69 years of age; 2003—04, CDC NHANES, n=2094
serum samples, geometric mean, >12 years of age; 2006, American Red Cross, n =600 plasma samples, median,
20-69 years of age. Error bars show the 95% confidence interval geometric mean.
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Fig. 2. Temporal trends of PFOS, PFOA and PFHxS in blood of New York State infants representing

2640 one to two-day-old infants (arithmetic means; data modified from Spliethoff et al.**); whole blood data

multiplied by a factor of 2).

sulfonamidoacetate (PFOSAA) increased by up to 3 pgL ™'
between 1974 and 1989, whereas a further increase in 2001
could not be observed. The temporal trend since 2000 was
investigated in more than 600 blood samples, obtained from six
American Red Cross blood banks representing six metropolitan
areas across the USA in 2000-0173% and in 2006.2%) In addition
the data of the two CDC NHANES studies were included to the
trend considerations (see Fig. 1).33-*4

However, this data compilation shows that since 2000 PFC
concentrations have not continued increasing. From 2000-01 to
2006, the PFOS, PFOA and PFHxS concentrations decreased
by 60, 25 and 30% respectively. The reasons for the decreasing
trend of the PFC concentrations in human blood are probably the
phase-out of POSF-based materials in 2000-01 and the PFC
elimination half-lives in blood of a few years (i.e. 4.8 years for
PFOS, 3.5 years for PFOA, 7.3 years for PFHxS)).

Temporal trend studies on PFC levels in blood of New York
State infants 1-2 days after birth (Newborn Screening Program)
showed maximum PFOS, PFOSA, PFOA and PFHxS con-
centrations between 1997 and 2001 followed by declining
values until 2007 (Fig. 2) suggesting decreases in perinatal
exposure.*®]

The observed declining concentrations after the year 2000
are coinciding with the phase-out in POSF production in the
USA. Thus, the response in PFC exposure appeared directly
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after the beginning of production change-over for POSF and
ammonium perfluorooctanoate (APFO). However, PFHxS
decreased slower over the years than PFOS and PFOA, possibly
due to its longer half-life and due to the continuing production of
perfluorohexane sulfonyl fluoride (PHSF). No temporal trend
was found for perfluorononanoate (PFNA), which could be
due to the continued production of PFNA or its precursor
compounds.

There are only a few other reports about trends of PFC
concentrations in human blood from other countries besides
USA. In Germany the PFC concentrations in blood of young
students from several German cities decreased from 40 to
15ngL~" for PFOS (1985-2004) and from 13 to 7ngL ™" for
PFOA (1985-2004).*7) In another German study plasma sam-
ples of young adults from an area with PFOA-contaminated
drinking water (Hochsauerland) were analysed. Samples were
taken between 1974 and 2004. PFOA and PFOS levels were
relatively constant with a small maximum between 1986 and
1990. In contrast, PFHXS levels steadily increased since
1977.%]

A comprehensive study was carried out in Norway, covering
a time period of ~30 years (1976-2007).2”) 57 pooled serum
samples from patients of Norwegian hospitals (one pool per
year) were analysed for 19 PFCs. Serum concentrations of
PFOS, PFOA and PFHxS increased from 1977 to the mid
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Fig. 3. Long-term temporal trends of PFOS, PFOA and PFHxS in pooled human serum samples collected in Norway
in 1977-2006 (male, 4050 years of age, data adapted from Haug et al.*”’) and estimated total global POSF production

volumes, data adapted from Paul et al.!"!
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Fig. 4. Temporal trends of PFOS, PFOA and PFHxS in serum (whole
blood concentrations multiplied by a factor of 2) of Chinese adults from
Shenyang, data adapted from references that are cited following the data
(values 1987: male + female, n= 159 values 1990: male + female,
n =331 values 1999: male, 34.5 mean age,n= 36!*Y); values 2002: male,
28.5 mean age, n = 36[40]; values 2004: male, 21-46 mean age, n = 6[41];
values 2008: male, 4045 mean age, n = 5[42]).

1990s, reached a plateau with maximum PFOS concentration of
31 pgL " and then started decreasing ca. 2001 (Fig. 3).

This declining trend in Norwegian blood (60% for PFOS,
40% for PFOA, 55% for PFHxS) was similar to that in American
blood from six metropolitan areas in the USA (see above®?) in
the same time period (2000-06). Compared to estimated total
global POSF production volumes,!'! the PFC decline in human
blood started at nearly the same time as the phase-out in 2000.

In China, a very high increase of the PFC concentrations in
human blood was reported due to the rapid industrial progress
in the past 30 years.'* Serum samples collected from Chinese
people in Shenyang in the years 1987, 1990, 1999 and 2002
showed extremely low PEC levels of <1 pgL™" in 1987 and
1990 (Fig. 4). In the following years, the PFOS levels increased
but still remained in the range of a few micrograms per litre. In
the year 2004, Yeung et al. found very high values for PFOS in
human blood from Shenyang (PFOS: 140 pg L', converted to a
serum basis by multiplying by a factor of two).[*' Four years
later, in 2008, the highest PFOS concentration in blood samples
from several Chinese cities was 15.7ugL~" for Shenyang
(converted to serum basis by multiplying by a factor of
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Fig. 5. Temporal trends of PFOS, PFOA and PFHxS in serum blood of
31-45 years old Australian men from urban locations (data adapted from
Kirrman et al./**! and Toms et al.[*°T).

two).1*?l A potential source for the high PFOS concentration
in Shenyang could be a fluorochemical manufacturing plant,
which is one of the biggest fluorochemical plants in China.
The temporal trend of PFOS concentration in Chinese blood is
shown in Fig. 4. Interestingly, the maximum PFOS concentra-
tion was not observed 2000-01 like in the USA or in Europe but
later ca. 2004. In contrast to PFOS, the PFOA and PFHxS levels
in human blood were in the same order of magnitude as those
from USA or Europe. But it is noticeable that PFHxS continu-
ously increased over the years in Shenyang.

In Japan, significant geographical differences in serum
concentrations of PFOS and PFOA were found."’! Time
trend studies using historical samples collected in Kyoto from
1983-99 demonstrated a 4.4-fold increase of the PFOA con-
centration in males coinciding with an increase in fluoropolymer
production in Japan between 1983 and 1999. Uptake from
drinking water might be one of the reasons for the high PFOA
levels in serum from Kyoto. During this time period (1983-99),
there was no obvious trend of increasing PFOS concentrations,
but further measurements showed that PFOS in male serum had
increased in 2003.1*

In Australia two studies included PFCs in human blood. The
first one was done in the years 2002—03 with pooled serum
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Fig.6. PFOS, PFOA and PFHXS concentrations in human blood (*, serum data, or whole blood data converted to serum basis by
multiplying by a factor of 2) of the general population (male adults; except for Sweden: female adults) in several cities all over the
world (2000-05); data adapted from references that are cited following the data: China!l; USA, Poland, South Korea, Belgium,
Malaysia, Brazil, Japan (2002), Colombia, Italy, India®®'; Canadal'®’!; J apan (2003)[13 81, Australial'®!; Norway[”]; Sweden!;

Germany!'*%; Sri Lanka.['®*!

samples from 3802 Australian residents!*>! and the other one

in the years 200607 with pooled serum samples from 2420
donors."*%! Samples were taken from men and women of several
different age groups from urban regions. A comparison of the
two Australian studies showed no temporal trend between the
years 2002—03 and 200607 (Fig. 5).

In general, PFOS and PFOA concentration levels were
comparable to those from urban regions of Europe, USA,
Canada or Japan, whereas the PFHxS levels in blood of
Australians seem to be slightly higher than those from other
countries (Fig. 6).

In general, there was considerable variation by country in
the PFC concentrations from severals cities all over the world
(Fig. 6). In most cities PFOS was the major compound, but in
South Korea (Republic of Korea), Sri Lanka and India PFOA
exceeded the level of PFOS, suggesting the possibility of the
presence of specific sources of exposure to PFOA.

Influence of age and sex on PFCs in human blood

As PFCs cannot be degraded in humans and show blood elim-
ination half-lives of several years it can be expected that PFC
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concentrations increase with age as observed for other POPs
(e.g. PCBs).[*”) But in contrast to this assumption, in general in
the US studies with a high sample number (i.e. NHANESE?34!
and American Red Cross study™?)) a correlation between the
PFC concentration in human blood and the age of the blood
donors could not be observed except for PFHxS. PFHXS con-
centrations were higher for adolescents than for adults.?**%]
This could be explained by the more frequent contact of children
with carpeted floors and upholstered furniture, known to trap
dust. PFHXS concentrations in house dust samples were higher
than for other PFCs.!**! Similar results of high PFHxS levels in
childrens blood were reported from Australia, where the highest
mean concentrations of PFHxS and also of PFOA and PFNA
were found in children <15 years 0ld.**) PFC concentrations
appeared to increase from birth and to be stable after 10 years of
age with the exception of PFOS, which increased steadily until
>60 years.[45’46]

In China, PFC concentrations (i.e. PFOS, PFHxS, PFOA,
PFNA) were found to be higher in blood of older people
(>40 years) than of younger ones (<30 years).[42] However,
in another study on blood samples collected from various



Chinese cities no age-related differences were observed.'*'! A
plausible explanation for this inconsistency is not yet known.

A clearer trend was found for the differences in PFC levels
between sexes. In the majority of the studies higher PFC levels
have been found in males than in females. For example, both, the
American Red Cross and the NHANES databases, have con-
sistently observed higher PFOS and PFOA concentrations in
males than in females, by ~10-20%.2! Similarly, in a German
pilot study the PFOS concentrations in male plasma were > 30%
higher than in female plasma, whereas the difference in PFOA
concentrations was <10%.°% Investigations on Chinese blood
samples also confirmed these observations.'*") Two main expla-
nations for this trend were assumed. First, the excretion through
menstrual bleeding might be a potential route for elimination
in females.**! Second, lactation and pregnancy may result in
reduction of adult female PFC concentration. Both opinions are
supported by the observation that there were no apparent sex
differences for children less than 12 years of age.[46] In contrast,
the time trend study on pooled serum samples of Norwegian
adults collected during the period 19762007 could not confirm
significant differences in PFC concentrations for men and
women.*%]

Temporal trends and spatial distribution of PFCs
in human breast milk

Comparing the PFC concentrations in milk and in blood of
the same donors the PFOS milk levels were ~1% of the corre-
sponding serum levels.®' 3! Mean concentrations in breast
milk from different countries were summarised by several
authors."*% Highest PFOS concentrations (medians) were
found in breast milk from Hungary with ~330ngL™" (n=13;
1996-97)P71 followed by Japan with 196ngL ™' (n=24;
1999),1°* Sweden with 166 ng L ™" (n = 12; 2004),°"! Germany
with 119ngL™" (n=57; 2006),°”! Malaysia with 111 ngL ™"
(n=13; 2003),°" USA with 106ngL™" (n=43; 2004),5%
Philippines with 104ngL™" (n = 24; 2002—04),**! China with
100 ng L' (n = 19; 2004),°% whereas the PFOS concentrations
in breast milk from Indonesia (n =20; 2001), Vietnam (n = 40;
2000-01), Cambodia (rn=24; 2002) and India (n=39;
2002-05) were below 100ngL~".* It is noticeable that the
high PFOS values in milk from Hungary and Japan were found
in samples taken before 2000, whereas the lower values were
related to samples taken after 2000.

Temporal trends of PFCs in human milk, collected from
Swedish women between 1996 and 2004, could not be
observed.®!! But a subsequent study, covering the period from
1996 up to 2008, resulted in decreasing trends for PFOS and
PFOA and an increasing trend for PFHxS in milk,**! possibly
indicating an increased exposure to PFHXS containing products.

Tissue distribution of PFCs in humans

Studies on tissue distribution or total body burden of PFCs in
humans are rare. Pooled tissue samples from Italian donors had
highest PFOA concentrations in lung (3.8ngg™"), followed by
kidney, liver and blood, whereas highest PFOS concentrations
were reported in liver (13.6ngg "), followed by lung, hypo-
physis, kidney, blood and further tissues.l®” As expected, the
PFOS burden in human liver was higher than in human blood.
For PFOS the mean liver to serum ratio was 1.3: 1 calculated
from PFC analyses of liver and serum samples of 23 male and
female US donors,?” whereas the liver to serum ratio was 3.5 : 1
for 12 Spanish human tissue samples.'")
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PFC pattern in human tissues

PFOS, PFOA, PFHxS and PFOSA were detected most fre-
quently in serum samples of the US population. Highest serum
concentrations were found for PFOS followed by PFOA and
PFHxS. PFNA, PFOSA, N-methylperfluorooctane sulfonami-
doacetate (N-MeFOSAA) and N-ethylperfluorooctane sulfo-
namidoacetate (N-EtFOSAA) were detected in more than
90% of the samples in concentrations <1 pgL~". Perfluoro-
butane sulfonate (PFBS), perfluoroheptanoate (PFHpA), per-
fluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA)
and perfluorododecanoate (PFDoDA) were detected less fre-
quently.®?>* PFOA was the most abundant perfluoroalkyl
carboxylate (PFCA), followed by perfluorononanoate (PFNA),
PFUNDAM!#2:62:63] apd perfluorotridecanoate (PFTriDA).[3 ’]
The shorter chain acids PFHxS, PFBSP7323%631 and per-
fluorohexanoate (PFHxA)!****! were found in human blood,
whereas perfluorobutanoate (PFBA), N-methyl perfluorooctane
sulfonamide (N-MeFOSA) and N-ethyl perfluorooctane sulfo-
namide (N-EtFOSA) were not detected.*) Human blood serum
predominantly consisted of linear isomers of the PFCAs com-
pared to branched isomers.[®* This was explained by the bio-
logical isomer discrimination, which leads to an enrichment of
n-PFOA in biological matrices.[®®! In contrast to PFOA, n-PFOS
was not enriched. Studies on PFOS in blood of the general
population of Sweden, UK and Australia showed that the pro-
portion of the linear PFOS isomer was only ~58-70%, whereas
the proportion of the linear isomer in the PFOS standard product
is higher (76-79%).1°”) Recently, polyfluoroalkyl phosphoric
acids (PAPs) were detected in human blood.1®! PAPs are
fluorinated surfactants used in human food contact paper pro-
ducts. In 200405 their concentrations in US human serum were
~4.5ug L™ in total.

Only a few studies exist about the PFC pattern in human
breast milk. In human breast milk samples, collected in 2004 in
USA and from 1999 to 2005 in Asian countries, PFOS was the
predominant PFC followed by PFOA, PFHxS and PFNA,
whereas PFBS was only detected in some single samples.>%*4
PFOS and PFOA were also the dominant PFCs in human
milk samples from China, collected in 2004 (45-360ngL ™"
and 47-210ngL™" respectively), followed by PFHxS, PFNA
and PFUnDA. Low amounts (<10ngL ') of PFBS, PFHxA,
PFHpA, PFDA as well as 8:2 fluorotelomer carboxylate
(8:2 FTCA) and 8:2 fluorotelomer unsaturated carboxylate
(8:2 FTUCA) could also be detected.[*®!

Summary of levels and trends in humans

Overall, PFCs were detected in humans in all parts of the world
indicating the ubiquitous presence of PFCs in exposure sources
(e.g. food, drinking water, air, dust). However, higher con-
centrations were found in humans living in industrialised
countries than in developing countries. In addition, in most
studies significantly higher PFC concentrations were found in
males than in females. Temporal trend studies showed generally
increasing PFOS concentrations until ~2000-01 in the USA and
Europe and ~2004 in China. Afterwards in several countries the
concentrations started to decrease.

This overview on PFCs in humans provides a basis for the
evaluation of changes in the contamination of marine biota. In
the following chapters the PFC concentrations and patterns in
marine biota were compiled in order to find out similarities or
differences in temporal and spatial trends between humans and
marine biota.
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Levels and trends in marine mammals

Temporal trends and spatial distribution of PFCs
in marine mammals

Temporal trends of PFCs in marine mammals

The investigation of temporal and spatial trends of PFC
contamination in humans was usually done on the basis of
whole blood, serum or plasma. For the assessment of trends of
PFCs in marine biota mostly protein-rich organs instead of blood
were used.

Temporal trend studies of PFCs in marine mammals from
different regions are shown in Fig. 7. Liver samples of ringed
seals (Phoca hispida) were collected between 1982 and 2003
at the eastern and the western coast of Greenland.!®”! At both
locations PFOS was the major PFC compound followed by
PFUnDA and PFNA. PFOS concentrations showed an increas-
ing temporal trend at both sites with higher concentrations in
seals from eastern Greenland, possibly caused by long range
transport from continental sources.'”"!

Ringed seal livers were also collected in the Canadian Arctic
from Resolute Bay (1972-2005) and Arviat (1992-2005).""1 In
agreement with the results from Greenland, at both Canadian
locations PFOS was the major PFC compound followed by
PFUnDA > PFNA > PFTriDA. PFOA concentrations were
similar to PFNA only in Resolute Bay. Similar to Greenland,
the PFOS concentrations showed an increasing temporal trend
until the end of the 1990s. But conversely to Greenland,
maximum concentrations of PFOS and PFOSA were found
during 1998 and 2000, followed by a significant decrease from
2000 to 2005.

A study on PFCs in livers of Baikal seals (Pusa sibirica)
collected in Lake Baikal, Russia, showed higher concentrations
of PFOS, PFDA and PFNA in 2005 than in 1992.172 In contrast
to the results for ringed seals from Greenland and Canada, the
major PFC compound in Baikal seals livers was PFNA instead
of PFOS.

In livers of melon-headed whales (Peponocephala electra)
from Japan collected in 1982, 2001-02 and 2006, PFOSA
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ringed seals from eastern and western Greenland,[®”) ringed seals from Canada (Arviat and Resolute Bay),/”!!
melon-headed whales from Japan'

and northern sea otters from Alaska'’*; data adapted from

concentrations were in the same order of magnitude as the
PFOS concentrations. A decreasing concentration trend could
only be observed for PFOSA between 2001-02 and 2006, but
not for PFOS and the PFCAs, which increased over the whole
time period.!”*! Interestingly, decreasing concentrations were
not observed for PFOS in blood of Japanese people either (see
above).

Temporal trends of PFCs in wildlife were also reported in
livers of northern sea otters (Enhydra lutris kenyoni) from south-
central Alaska collected from 1992 to 2007, with PFOS, PFOSA
and PFNA being the predominant PFCs.[”*! PFOS and PFOSA
concentrations increased from 1992 to 2001 and 1999 respec-
tively and then decreased until 2007. In contrast, the PFNA
concentration was constant from 2001 to 2003, and then
increased from 2004 to 2007. A temporal trend study on south-
ern sea otters (Enhydra lutris nereis) collected from the Cali-
fornia coast during 1992-2002 confirmed an increase in PFOS
concentration up to 1998 and a decrease after 2000.1%! Unu-
sually high concentrations of PFOA in the sea otters suggest the
existence of specific sources of this compound in the coastal
area of California.

In a study about temporal trends of PFCs in livers of harbour
seals (Phoca vitulina) from the German Bight during 1999—
2008, the observation of an increasing trend in PFC concentra-
tions up to the end of the 1990s was confirmed, followed by a
maximum ca. 2000 and a subsequent significant decline until
2008.7%1 This decreasing trend of PFC compounds was found
for PFOS, the predominant PFC, as well as for C4,—C- perfluoro-
alkyl sulfonates (PFSAs), perfluorooctane sulfinate (PFOSI),
PFOSA, and PFOA. For the longer chain PFCAs (Co—C;3) no
significant temporal trend could be observed. Overall, the
concentrations in the liver samples of the harbour seals were
high compared to other wildlife of similar trophic levels. In
contrast to decreasing PFC concentrations in harbour seals from
the German Bight, no significant temporal trend was observed in
grey seals (Halichoerus grypus) from the Baltic Sea between
1999 and 2008. However, significantly increasing concentra-
tions were found for C4—Cg PFSAs, PFOSi and C,—C,4 PFCAs



between 1974 and 1998 (J. Kratzer, L. Ahrens, A. Roos and
R. Ebinghaus, unpubl. data).

Highest PFC values in wildlife were found in polar bears
(Ursus maritimus), which are the top predators in the Arctic food
chain (up to or exceeding 4000 ng g ' ww).””! Temporal trends
for polar bear livers were reported from 1972 to 2002 from the
North American Arctic,!’®! and from 1984 to 2006 from central
eastern Greenland.!””) Smithwick et al. found increasing PFOS
and Co—C,; PFCAs concentrations between 1972 and 2002 at
two locations (northern Baffin Island, Canada, and Barrow,
Alaska), whereas the PFOSA concentration showed a decreas-
ing tendency.’”®! An increasing temporal trend was also
observed for PFHxS in polar bear samples from Barrow and
for PFOA in samples from Baffin Island. Dietz et al. found
increasing concentrations of PFOS and Cg—C;3 PFCAs in livers
of polar bears from central eastern Greenland from 1984 to
2006, whereas the temporal trend of PFOSA was not significant
and PFHxS was not detected.[””]

As most of the polar bears’ diet consists of ringed and
bearded seals it might be possible that similar trends exist for
their prey. Indeed, similar increasing temporal trends were
found between 1970s and 2000-02 in livers of ringed seals to
those of polar bears from the same locations in Canada'’'"®! and
eastern Greenland.!®*"?) But neither Smithwick et al. (data up to
2002 from the Canadian Arctic) nor Dietz et al. (data up to 2006
from eastern Greenland) could affirm declines of PFSAs or
PFCAs in polar bears from 2000 to 2005 as reported for ringed
seals from the Canadian Arctic.l”'! However, the changes of the
PFC concentrations in polar bears should be investigated in the
future.

Spatial distribution of PFCs in marine mammals

An overview of the global distribution of PFCs in marine
mammals is given in Table 1. For a comparative examination
of spatial distribution trends ringed seals are an ideal species
because of their widespread distribution and their relatively
small home range.’® Their PFC concentration is presumably
representative of the regional marine food web contamination.
Furthermore, ringed seals are an important prey source for polar
bears that have been shown to be the highest contaminated
marine mammals.””#-%2] Butt et al. reported that mean con-
centrations were similar between ringed seal populations in
the Canadian Arctic (11 locations, 10 liver samples per site).
Concentrations of PFNA and PFUnDA generally ranged
between 1 and 10ngg ' ww, whereas PFTriDA was less than
Ingg™' ww and PFOS concentrations were mainly between
10 and 40 ng g~" ww.®"! Thus, PFOS concentrations of ringed
seals from the Canadian Arctic were considerably lower than
those reported in ringed seals from eastern Greenland (61—
130ngg ' ww in 2003),1°) in harbour seals from the north-
west Atlantic (US east coast) (8-1388ngg ' ww in 2000—
07)1 or the southern North Sea (45-488ngg™' ww in
200217 559-1665ngg™" ww in 2007),l'® or in grey seals
from the Baltic Sea (156-1072ngg~ " ww in 2006; J. Kratzer,
L. Ahrens, A. Roos and R. Ebinghaus, unpubl. data). Remark-
ably higher concentrations of PFUnDA relative to PFNA were
reported in livers of cetaceans like whales, dolphins and por-
poises from Hong Kong and Japan[73’84] suggesting distinctive
sources in the mid latitudes of eastern Asian countries and
degradation of 10:2 fluorotelomer alcohol (10:2 FTOH).l”*!
In general, mammals feeding at higher trophic levels had higher
concentrations of PFCs than mammals feeding at lower trophic
levels, which indicate their high biomagnification potential.”””!
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Tissue distribution of PFCs in marine mammals

The analysis of different tissues of marine mammals allows the
investigation of tissue distribution of PFCs and the estimation of
total body burdens. PFOS, PFBS, PFBA and some longer chain
PFCAs were quantified in liver, kidney, spleen, blubber and
muscle tissues of harbour seals (Phoca vitulina) from the Dutch
Wadden Sea. Highest PFOS concentrations were found in liver
and kidney.!'”! In tissues of harbour porpoises (Phocoena
phocoena relicta) from the Black Sea PFOS concentrations
decreased from liver > kidney > muscle > brain > blubber.!*!
Another study reported tissue distribution of PFCs in ringed seals
(Phoca hispida) from Resolute Bay, Canadian Arctic, with
highest PFOS concentrations in liver followed by lung, heart,
spleen, blood, muscle and blubber.®*! An investigation of
the total body burden and tissue distribution of 18 individual
PFCs in harbour seals from the German Bight in 2007 resulted
in decreasing PFOS concentrations in the following order:
liver > lung > blood > thymus > kidney > heart > brain >
muscle > thyroid > blubber.'®! Regarding the total body bur-
den distribution (in percent of tissue mass) the highest > PFC
amounts were found in blood.!'®3¢) As PFCs accumulate more in
the liver than in other organs, liver tissue was chosen for most
trend studies on PFCs.

PFC pattern in marine mammals

PFOA is not a predominant PFCA in marine mammal livers
which is in contrast to human blood samples (see above). Longer
chain PFCAs show relatively high amounts in polar bears with
PFNA as the most abundant compound at concentrations often
above 100ngg ' ww followed by PFUnDA and PFTriDA.
In seals the concentrations of PFNA and PFUnDA were
<100ngg ' ww. Levels of both compounds were in the same
order of magnitude (Table 1).

In general, concentrations of odd-number chain length
PFCAs in marine mammals were higher than those of even-
number chain.[%%7!77- 7887881 Thig specific odd-even PFCA
pattern supports the hypothesis of atmospheric fluorotelomer
alcohol (FTOH) degradation as a source of PFCAs. For exam-
ple, 8 :2 FTOH degrades to equal amounts of PFOA and PFNA,
but PFNA has been shown to be more bioaccumulative than
PFOA, resulting in higher PFNA levels in organs of biota
compared to PFOA.* In the same way 10:2 FTOH possibly
degrades to equal amounts of PFDA and PFUnDA, but levels of
PFUnDA were higher in biota because of its higher bioaccu-
mulation potential [**)

A variety of branched isomers of longer chain PFCAs
were found in liver samples of polar bears from Greenland.[*”’
The presence of branched isomers suggests contribution
from electrochemical fluorination (ECF) that has been one of
the two main production processes for over 50 years. ECF
results in a mixture of even and odd numbered structural
isomers (linear with up to 30% branched isomers), whereas
production by telomerisation yields in even numbered, purely
linear isomers.”!°) However, in seals the branched/linear
isomer distribution of PFOS (4% branched) was different
from the expected isomer distribution that is found in
technical grade PFOS (26% branched). This was explained by
higher elimination rates of branched isomers than of linear
isomers!'” as Loveless et al. have shown for APFO in rats and
mice.””"]

The shorter chain PFCAs (Cy4, Cg) were usually not detected
in marine mammals, whereas the shorter chain PFSAs (C4, Cg)
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Trends of PFCs in marine biota and in humans
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were found in some animals in a few nanograms per gram range
showing decreasing temporal trends in harbour seal livers from
the German Bight.[”) In harbour seals from the Dutch Wadden
Sea, PFBS was found only in spleen, but not in liver.!'”! Polar
bears showed the highest amounts of PFHxS among mammals,
but PFBS was not analysed (Table 1).

Fluorotelomer saturated and unsaturated carboxylates
(FTCAs and FTUCAs) were found in very low concentrations
in several marine mammal species such as ringed seals
(<4.6ng g_1 ww)!"! and dolphins from the US Atlantic Ocean
coast (<1.4ngg" ww),”?! but they were not detected in polar
bears from the Canadian Arcticl’® and in dolphins and
porpoises from South China and India.®*® The presence of
those precursor compounds supports the hypothesis that atmo-
spheric FTOHs are a source of PFCAs as FTOH can degrade via
atmospheric oxidation to FTCAs and FTUCAs. But FTCAs
and FTUCAs are also known degradation products of FTOHs
in microbial processes and in rat metabolism and can be detected
in sewage sludge.”"! Thus, it is not clear whether direct
exposure of FTCAs and FTUCAs or uptake and subsequent
metabolism of FTOH is the reason for these compounds in
marine mammals.

PFOSA is known to be an intermediate in the production
process of several PFCs. PFOSA was also reported in mammals
as a metabolic product of N-EtFOSA, used as an insecticide,
named Sulfluramid, for agricultural control of leaf-cutting ants
in Brazil as well as for the domestic control of cockroaches and
termites.[> > In mammals, PFOSA can rapidly be metabolised
to PFOS.[°*) Remarkably high PFOSA concentrations (in the
same order as PFOS) were reported in liver of whales from
the Canadian Arctic, from Iceland and the Faroe Islands and
from Japan as well as in dolphins from Brazil (Table 1). It was
reported that PFOSA concentrations in cetaceans were often
higher than those of PFOS.[**?*%%] However, the reason for this
pattern just in whales is unknown. The PFOS precursor
N-EtFOSA itself was found in dolphins and porpoises from
South China,®! in whales from the Eastern Arctic?”® and in
harbour seals from the German Bight.['®]

Influence of age and sex on PFCs in marine mammals

In general, in marine mammals no sex related differences in
PFC concentrations were found (in seals,!”7>88397) in harbour
porpoises,® in beluga whales,””®! in polar bears®”-*%1%) 1n
contrast, significant differences between males and females
were reported in grey seals from the Baltic Sea, males having
higher concentrations of PFOS than females.[**!

No significant age trends were identified in marine
mammals,®®7**1 in ringed seals!”"**!°?! and in harbour
porpoises.®™ Contrarily, Smithwick et al. found increasing
PFOS and Cyo—C;4 PFCA concentrations in male polar bears
up to an age of six.””) Higher concentrations of PFOS in pups
than in adults were also found in sea otters from Alaska,l’¥!
Baikal seals from Russia,”?! bottlenose dolphins from the
Atlantic Ocean,®?! harbour seals from the north-west Atlantic
Ocean'™! and the German Bight,!”®) harbour porpoises from
the southern North Sea®”! and elephant seals from the
Antarctic.['%! This was explained by higher rates of elimination
in adults,!”?! different consumption of different contaminated
food,”’® and PFC transfer from mothers to their offspring
through milk or placenta after parturition.l”>'4

Hence, a comparison of PFC concentrations is only mean-
ingful within the same age group for males or females.!”)
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Summary of levels and trends in marine mammals

Overall, high PFCs concentrations were detected in marine
mammals of higher trophic levels, even when living in remote
regions like the Arctic. In most of the studies no sex related
differences in PFC concentrations were reported, but age related
differences were observed. PFOS was the predominant com-
pound in marine mammals liver. Among the PFCAs, PFNA
and PFUnDA were the most abundant compounds, whereas the
PFOA concentration was negligible. In marine mammals PFOS
concentrations increased over time depending on the species
and the sampling locations. Several species like seals from the
German Bight, the Baltic Sea and from the Canadian Arctic
showed maximum levels for single PFCs ca. 2000 followed
by declines, for other mammals like polar bears concentrations
have continued to increase.

Levels and trends in seabirds
Temporal trends and spatial distribution of PFCs in seabirds
Temporal trends of PFCs in liver of seabirds

There is only a limited number of temporal trend studies on
PFCs in seabirds. Over a period of ~20 years (1979-2000) liver
samples of white-tailed sea eagles (Haliaeetus albicilla) were
collected from Eastern Germany and Poland and analysed for
PFOS, PFHxS, PFOA and PFOSA by Kannan et al. 4] Although
the PFOS concentration had a high variation within the sampling
year, increasing concentrations were indicated.

In another study liver samples of northern fulmars (Fulmaris
glacialis) and thick-billed murres (Uria lomvia) from
Canada, collected over a period of ~30 years (1975, 1987,
1993, 2003-04), were analysed for long chain PFCAs including
FTCAs and PFOS by Butt et al.['%! The PFOS contamination of
the birds from the Canadian Arctic was low with levels usually
<Ingg™' ww. In contrast to other wildlife animals, in which
PFOS typically dominated the PFC pattern, in these seabirds
PFCAs dominated with PFTriDA being the predominant
compound (3.8-7.1ngg™' ww in 2003-04). Similar results
were obtained in glaucous gull livers (Larus hyperboreus) from
Norway with PFTriDA as the dominant PECA as well.!'° This
is in contrast to other wildlife animals in which the predominant
PFCA typically was PENA or PFUnDA but not PFTriDAL®-1%%]
(see also below). Concerning temporal variations Butt et al.
found increasing PFC concentrations in the Canadian birds
between 1975 and 2004."°! The PFCA concentrations
increased between 1975 and 2004 in thick-billed murres and
between 1975 and 1993 in northern fulmars, however, the PFCA
concentration in northern fulmars remained constant between
1993 and 2003. The PFOS concentration was relatively constant
between 1993 and 2003-04 in both bird species which is
consistent with temporal trends in ringed seals (Fig. 8).l""!

Temporal trends of PFCs in eggs of seabirds

Because of their relatively high PFC concentrations some
scientists use birds eggs instead of liver for studying time trends.
Moreover, seabird eggs are part of the traditional human diet in
northern Norway and therefore a potential source of contaminant
exposure. Verreault et al. reported on PFC pattern and temporal
trends in eggs of herring gulls (Larus argentatus) from two
colonies in northern Norway over a period of 20 years (1983,
1993, 2003).1'°V Within the group of PFSAs, highest concentra-
tions were found for PFOS with maximum values of up to
42ngg ' ww, whereas PFHxS and PFDS were found at much
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lower concentrations (<1 ng g_1 ww). PFBS was not detected,
PFOSA only in low concentrations (<0.5ngg ' ww). Within
the group of PFCAs, the PFUnDA and PFTriDA were the
most dominant compounds with concentrations up to 4.2 and
2.8ngg~' ww respectively. Similar results were obtained for
herring gull eggs collected in 2007 from the Laurentian Great
Lakes of North America with PFUnDA and PFTriDA values
both between 10 and 29 ng g~ ' ww.['% Regarding the temporal
variation, a significant increase of PFOS, PFHxS and PFDS
concentrations in Norwegian herring gull eggs was observed
between 1983 and 1993."'%7 From 1993 to 2003, the PFOS levels
were levelling off, whereas PFDS continued increasing. For
PFOS this observation agreed with the results of Haug et al.,
who reported that the PFOS concentrations in human blood of the
Norwegian inhabitants reached a plateau in the mid 1990s (see
above and Fig. 3).1*]

In 2005, a temporal trend study of PFOS in guillemot eggs
(Uria aalge) from the Baltic Sea collected between 1968 and
2003 was published by Holmstrom et al.l'®”! PFOS increased
between 1968 and 1997 followed by a decline (Fig. 9).

PFOA was not detected in any of the samples (<3 ngg™ " ww)
and other PFCAs were not analysed. However, a peak for PFOS
in 1997 as shown for Swedish guillemot eggs in Fig. 9 could
not be confirmed by other authors,!'°>'” possibly caused by a
lack of samples during this period of time. The peak ca. 1997
followed by a decline in PFOS concentration occurred too early
to be related to the phase-out which started in the year 2000.
In comparison to the concentration levels in bird eggs from

1
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Fig.8. Temporal trends of PFOS and PFTriDA in livers of northern fulmars
from Prince Leopold Island, Canada, data adapted from Butt et al.l'%!

Norway (20-42ng g_1 ww)!'%) or bird livers from Canada

(~1ngg " ww or lower),!'! the PFOS concentrations in bird
eggs from Sweden were higher (several hundred nanograms per
gram (wet weight)) but in the same order as the PFOS concen-
trations of birds from USA,* Japan and South Korea.!''” One
of the reasons for the high PFOS contamination in guillemot
eggs could be the relative high PFC contamination of the Baltic
Sea region due to the high anthropogenic influence and the slow
rate of water exchange with the North Sea.l”"!

Spatial distribution of PFCs in seabirds

Regarding the spatial distribution of PFCs, in general the PFOS
concentrations in livers of white-tailed sea eagles (Haliaeetus
albicilla) from Europe (<3.9-127ngg ' ww) were severalfold
less than those found in bald eagles (H. leucocephalus) from the
United States (24-467ngg ' ww),*®! whereas PFHxS, PFOA
and PFOSA were not detected. In contrast, PFOS concentrations
in cormorant (Phalacrocorax carbo) livers from Southern Italy
were in the same order of magnitude (32-150ng g~ ' ww) as those
from North American Great Lakes.”*! Also contrary to sea eagles,
the mean PFOA concentration in cormorant livers was, on
average, 1.7-fold higher (95ngg ' ww) than the mean PFOS
concentration (61 ngg ' ww).

Overall, PFOS concentrations in seabirds were lower than
those in other marine animals of similar trophic levels.!'®! For
example, PFOS concentrations in seabirds were ~10-fold lower
than in ringed seals and 1000-fold lower than in polar bears. On
the other hand, ZPFCAs in seabirds were in the same range as in
ringed seals and 100-fold higher than in polar bears. Therefore
Butt et al. concluded that seabirds have a higher biomagnifica-
tion potential for PFCAs than mammals.!!

The spatial distribution of PFC in birds is shown on global
scale in Tables 2 and 3. In general, in remote areas like the
Antarctica PFOS levels in seabirds were in the range of only a
few nanograms per gram (wet weight), not only in the 1990s but
even up to 2005, whereas the levels were up to several hundreds
of nanograms per gram in more populated regions like the
Swedish coast of the Baltic Sea, the Great Lakes of North
America or the coastal areas of China, Japan and South Korea.
Individual PFCs (e.g. PFOS, PFCAs and PFOSA) have different
spatial distribution possibly due to long-range atmospheric
transport and ocean current transport. Thus, according to
Lofstrand et al. PFCs should not be treated as one group of

1400
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Fig. 9. Temporal trend of PFOS in guillemot eggs from the Baltic Sea, Sweden (1968—2000), data adapted from

Holmstrém et al.['*!
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chemicals."''") Additionally, the assessment of the global dis-
tribution is difficult because PFC concentrations in birds depend
on the diet (significant higher PFOS concentrations were found
in the livers of piscivorous birds than in non-piscivorous
birds)!"'?! and therefore on their trophic levels, their specific
bioaccumulation and elimination rates and on their migration
pattern. Thus, the comparison of different species is proble-
matic, as a consequence further investigations are necessary.

Tissue distribution of PFCs in seabirds

The tissue distribution of PFCs was investigated in common
guillemot (Uria aalge) from the Baltic Sea, which showed
highest PFOS concentrations in eggs, followed by chick liver,
kidney, adult liver and muscle.!''*! Similar results were obtained
for glaucous gulls (Larus hyperboreus) with highest PFOS
concentration in plasma, followed by egg and liver, and
brain.''®! Considerable amounts of PFOS were reported in
spleen and in feathers (31-247ngg ' dw) compared to bird$
livers (12-476ngg~" ww)."" 1t was concluded that the
deposition of PFOS in the feathers might be an important
elimination route for PFOS in birds. In another study the
authors reported higher PFOS levels in the spleen
(6.2-131.5ng g~ ww) than in the liver (4.0-55.7ng g~ ww) of
brown pelicans (Pelecanus occidentalis) followed by moderate
concentrations in lung, kidney and brain (1.2-17.3ngg™" ww)
and lowest concentrations in heart and muscle (<7ngg '
ww).['13] As high concentrations of PFOS were found in bile of
pelicans (17-100 ng mL ") it was assumed that biliary excretion
might be a major pathway of elimination of PFOS from biota
tissues. In the future more research into the tissue distribution of
PFCs and the total body burden in birds is needed.

PFC pattern in seabirds

Regarding the PFC pattern in seabirds, PFUnDA and PFTriDA
were the most abundant compounds within the PFCAs. The
dominance of odd-numbered PFCAs over the adjacent even
numbered chain lengths had also been observed in other species
(e.g. mammals, see above). Comparatively high amounts of
even carbon-chain PFCAs (PFDA and PFDoDA) were found in
birds from Hong Kong, where different exposure sources were
assumed.!''®!

Shorter chain PFCAs and PFSAs, like PFBS and PFBA, were
mostly not analysed or not detected in seabirds. PFHXA was
found in birds at low concentrations (several nanograms per
gram (wet weight)). Higher concentrations of PFHxS were
reported in birds from several locations in Europe (Tables 2, 3).
Those birds were also high contaminated with PFOS and
in one case with PFOA, indicating several sources of
exposure.[**!14]

FTCAs were not found in seabirds.!'°®! But the correspond-
ing unsaturated acids, 8:2 and 10:2 FTUCAs, were detected
in some individuals at very low concentrations.!'*>'® Those
compounds can be generated from atmospheric oxidation or
biodegradation of FTOHs. 8195

PFOSA occurred at different levels depending on the species
and locations. In general, PFOSA concentrations in seabirds
were low. High amounts were found in liver of Japanese
cormorants (up to 362ng g~ ' ww) probably indicating a source
of exposure.l' 7! Further PFOS metabolites like N-MeFOSA or
N-EtFOSA were rarely analysed. N-EtFOSA was only detected
in guillemot eggs from North-Western Europe at low concen-
trations (<10ng g " ww).[''1]
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Influence of age and sex on PFCs in seabirds

Age and sex specific differences in PFC concentrations in sea-
birds have not been observed in most of the studies.[2>94110:113]
Analyses of blood of breeding lesser black-backed gulls (Larus
fuscus) from northern Norway resulted in lower concentrations
of PFCs in females than in males,”" ' which is probably caused
by excretion of PFCs through laying eggs as discussed ear-
lier,!'%119:1201 Additionally, high concentrations of long chain
PFCAs in eggs support the assumption of an oviparous PFC
transfer even though the extent might vary between species
and different PFC compounds.!'%-'"%1211 L ower PFC levels in
females were also reported for Cy4- in fulmars and C;5-PFCAs in
murres'' %! and for PFOS in mergansers.' %

Summary of levels and trends in seabirds

Overall, PFOS concentrations in seabirds were lower than those
in other marine animals of high trophic levels, whereas PFCA
concentrations were of the same size or higher than in marine
mammals. PFUnDA and PFTriDA were the most abundant
PFCAs. A higher biomagnification potential for PFCAs in
seabirds than in mammals was assumed.

Regarding the total body burden of PFCs, PFOS concentra-
tion in birds was higher in eggs than in liver. In remote regions
like the Antarctica PFOS contamination of seabirds was low
compared to more populated coastal areas of Europe, USA or
Asia. Temporal trend studies of seabirds were rare. However, in
one study PFOS levels increased between 1983 and 1993, then
reached a plateau (1993-2003), in another study a maximum
concentration was found in 1997 and in two studies increasing
trends were obvious up to 2004.

Levels and trends in fish
Temporal trends and spatial distribution of PFCs in fish

For temporal and spatial trend studies in fish the whole fish
tissue was mostly used and therefore no trend studies of PFCs in
fish liver or blood are available. Thus, the comparison of fish
with humans, marine mammals and seabirds is difficult. There
were two trend publications about whole body PFOS con-
centration of archived lake trout samples (Salvelinus namay-
cush) from Lake Ontario !'?%!2] According to Martin et al.,
the PFOS burden increased from 43 to 180 ng g71 ww between
1980 and 2001. But the increase was not linear, decreasing
concentrations in the mid-1990s were observed, followed by
another increase until 2001.l'**! The authors supposed this
might be caused by an indirect influence of the invasion of zebra
mussels being a new, not contaminated diet for the trouts.
Concerning PFOS their results were confirmed by Furdui et al.,
who analysed fish samples between 1979 and 2004.1'*?! Initially
PFOS increased and then declined between 1993 and 1998,
followed by another increase until 2004. The authors addition-
ally analysed longer chain PFCAs and PFOSA. These com-
pounds showed similar temporal variations to that observed
for PFOS. PFCA concentrations were generally low (up to
3ng gfl ww) with PFUnDA, PFDoDA and PFTriDA as the
dominant compounds within this group. Maximum PFC con-
centrations were found between 1988 and 1993 followed by a
minimum in 1998 which could not be explained satisfactorily.

Geographic variations of PFCs and PFC profiles of different
fish species are given in Table 4. Regarding fish liver, highest
PFOS concentrations were found in plaice (Pleuronectes platessa)

of the Western Scheldt, Belgium (up to 7760ngg ™" ww),l!>
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Trends of PFCs in marine biota and in humans

which might originate from paper mill factories using PFOS
for surface treatment. High PFOS contamination was also
obvious in fish livers from other industrialised regions like
Canada and USA (up to 318ngg ' ww for Georgia), Japan
(up to 3250ngg~" ww) and Europe (up to 551 ngg ' ww for
Finland), whereas lowest PFOS concentrations were detected in
fish livers from remote regions like the Arctic, the North Atlantic
and North Pacific Oceans (up to 18ngg ' ww for eastern
Greenland).

Tissue distribution of PFCs in fish

Investigations on tissue distribution of PFCs in fish from Brazil,
Georgia (USA) and China indicate higher amounts of PFOS in
liver than in muscle (Table 4).['*7'?7] PFOS contamination
of fish from Michigan waters showed varying results when
comparing liver and muscle, but highest values for fish eggs
(260ng g~ ' ww).!"""T High levels of PFOS and PFCAs were also
reported in fish eggs from Chinese sturgeon (Acipenser sinen-
sis).'?* PFOSA, PFOSAA and N-EtFOSAA were only detec-
ted in absorptive organs.!'**! PEC concentrations in blood of
bluefin tuna (Thunnus thynnus) and swordfish (Xiphias gladius)
from Italy were in a similar order of magnitude as in the
corresponding livers.””* When rainbow trout (Oncorhynchus
mykiss) were exposed to PFCs for 12 days to determine the
tissue distribution, PFCs accumulated to the highest extent in
blood > kidney > liver > gall bladder and to the lowest extent
in gonads > adipose > muscle.[*?)

PFC pattern in fish

Within the PFCAs, in fish the longer chain compounds like
PFNA, PFUnDA and PFTriDA were most abundant. In general,
the concentrations of the three compounds were in a similar
order of magnitude (a few nanograms per litre) and often found
in higher concentrations than PFOA (Table 4). PFUnDA was
the most dominant PFCA which is probably caused by the high
bioaccumulation and biomagnification potential [!23128-131]
The high concentrations of PFUnDA in Asian skipjack tuna
livers (Katsuwonus pelamis) indicate distinctive sources of
PFCs arising from East Asian countries probably originating
from the degradation of 10 : 2 FTOH.!"**! In contrast, in Chinese
sturgeon (Acipenser sinensis) PFTriDA was the most abundant
PFCA in all tissues analysed except for muscle.['*

Even in remote mountain lakes (n=6) of the Qinghai—
Tibetan Plateau of China (average altitude exceed 4000 m)!32!
as well as in remote mountain lakes (n=4) of the French
Alpes (altitude 1600-2000 m)!**3! PFOS and PFCAs could be
detected in fish samples. In both locations PFOS and PFCAs
concentrations in fish were in the range of a few ng per g ww.
Also at both locations, PFUnDA was the most abundant
PFCA in fish. As there were no known point sources such as
factories, wastewater effluents or polluted rivers near those
remote lakes, volatile PFOS and PFCA precursors must
have been deposited into the lake by the atmosphere. This
hypothesis has been supported by several studies assuming
long-range atmospheric transport of PFOS and PFOA precursor
substances. %14

Branched C;; and C,3 PFCA isomers were detected in lake
trout from Lake Ontario probably caused by PFC production
processes.['??] High amounts of branched chain PFOS isomers
(up to 75ngg~' ww) were found in fish from Georgia waters
which was probably due to the metabolism of precursor
compounds.[lm
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PFOSA occurred at different levels in certain species and
locations (Table 4). It was found in fish from the Baltic Sea and
in American fish liver samples in a similar range as PFOS and in
lower concentrations in skipjack tuna from Japan.!'*%! In gen-
eral, PFOSA concentrations in marine fish were low, whereas
high amounts in fish of Lake Ontario (up to 150ngg™" ww;
whole ﬁsh)[123 Y or fish from the coast near Helsinki (up to
141 ngg~" ww; liver)!'*! probably indicate different sources
of exposure.’””! PFOSAA was found in fish from China.l'?*!
Additionally N-EtFOSAA, another precursor of PFOS, was
found in fish from a lake in South Korea.!"*'! Those FOSAAs
are known to be oxidation products of perfluorochemical
mixtures in paper-protectants and surface treatment applica-
tions®" and often found in the effluents of wastewater treatment
plants and in rivers.'*") Further PFOS metabolites, like
N-MeFOSA or N-EtFOSA, were rarely analysed. In general,
low concentrations of shorter chain PFCAs and PFSAs (e.g. PFBA,
PFHxA, PFBS, PFHxS) were reported except for some fishes
e.g. from Georgia that were strongly influenced by industrial
and commercial discharges in Georgia waters.!'?”) These findings
were explained by the low bioaccumulation potential of the
C4-and Cg-compounds (see http:// www?2.dupont.com/Capstone/
en_US/assets/downloads/final_final_capstone_gen_summary_
09_05_2008.pdf, accessed 10 December 2010).

Influence of age and sex on PFCs in fish

Age and sex specific differences in PFC contamination of fish
have rarely been investigated. In livers of skipjack tuna (Kat-
suwonus pelamis) from the Sea of Japan no significant difference
existed in PFOS concentrations between the sexes,['>Y whereas
in livers of bass (Micropterus salmoides, Micropterus dolomieu)
from remote New York State inland lakes, PFOS values were
lower in females than in males.[''?! Because of the high PFOS
concentrations in fish eggs,!''*'*") oviparous elimination in
female fish was assumed. Increasing concentrations of longer
chain PFCAs with fish age were found for Chinese sturgeon
(Acipenser sinensis) probably due to a specific accumulation of
the longer chain compounds.['*! Thus, there are many open
questions concerning the spatial distribution and the temporal
trends of PFCs in fish and further investigations are needed.

Summary of levels and trends in fish

Overall, temporal trend studies of PFCs in marine fish were rare.
However, increasing trends of PFOS concentrations in whole
fish tissues were obvious up to 2004. Fish was contaminated
with PFCs globally, and PFOS was detected even in fish of
remote mountain lakes.

In marine fish, PENA, PFUnDA and PFTriDA were the most
abundant PFCAs with mostly higher amounts of PFUnDA.

Comparison to temporal trends in sediments

Accumulation of PFOS in animals of higher trophic levels is
controlled by a dynamic equilibrium between uptake and
elimination or by protein turnover, if PFOS covalently binds to
proteins in liver and blood. Therefore, abiotic matrices such as
dated sediments might be better indicators for temporal trend
analysis of PFOS.[*%

Recently two temporal reconstructions of PFC pollution
from dated sediment core samples collected in Tokyo Bay
with sediment depositing during the 1950s up to 2009 were
reported.'*%"37) Most of the PFCs increased especially after the
early 1970s. Over the years the concentration of PFOS gradually
decreased from the early 1990s, the PFOS precursors FOSAAs


http://www2.dupont.com/Capstone�/en_US/assets/downloads/final_final_capstone_gen_summary_09_05_2008.pdf
http://www2.dupont.com/Capstone�/en_US/assets/downloads/final_final_capstone_gen_summary_09_05_2008.pdf
http://www2.dupont.com/Capstone�/en_US/assets/downloads/final_final_capstone_gen_summary_09_05_2008.pdf

decreased rapidly in the late 1990s, whereas PFOA increased
rapidly, due to the shift from POSF based products to telomer
based products after the phase-out time. Reconstruction of PFC
pollution with shorter chain PFCs (<Cg) was not possible
because of their low sorption to the sediment. Longer chain
PFCAs (Co—C13) showed a similar trend as PFOA. The increas-
ing time trend of PFOA in sediment of Tokyo Bay was in
agreement with the results of trend studies on PFOA levels in
human blood serum from Kyoto from 1983 up to 2004, although
considerable regional differences in Japanese human serum
concentrations were reported.1**13%:13%1 [ contrast, the decrease
of PFOS concentration in sediment from Tokyo from the early
1990s could not be confirmed in human blood from Kyoto.

Among the PFCAs, PETriDA was the most dominant com-
pound in sediment from Tokyo Bay. This result is very inter-
esting because PFTriDA has been shown to accumulate in birds
to a high extent and also in fish and mammals as mentioned
above. As toxicity of PFCAs increases with increasing chain
length,!"**! future monitoring should be aware of the importance
of those compounds.

Summary and conclusions
PFCs in humans

Most trend studies on PFCs focussed on human blood. In USA
and Europe PFOS levels increased from the 1970s to the
mid 1990s, reached a plateau, and then started decreasing ca.
2000-01. In China the decrease began ca. 2004, in Japan no
subsequent decline could be observed, and for Australia not
enough data exist to evaluate the temporal trend. The observed
declines after the year 2000 are coinciding with the phase-out
in POSF production in the USA. Thus, the response in PFC
exposure appeared contemporary after the beginning of
production change-over for POSF and APFO. Besides the
phase-out, lower emissions due to optimisation of production
processes might be a reason for the declining temporal trend,
too. However, the temporal decrease for PFHxS is slower than
that for PFOS and PFOA, possibly due to its longer half-life or
due to continuing production of PHSF.

Thus, the initially mentioned hypothesis that the phase-out of
POSF based products ca. 2001 should be reflected by a decrease
in PFC concentrations in the environment can be confirmed
for humans from industrialised regions in the case of PFOS and
PFOA and to some extent also in the case of PFHxS. Shorter
chain (e.g. PFBS, PFBA, PFHxA) and longer chain compounds
(e.g. PFNA, PFUnDA, PFTriDA) as well as PFOS precursors
(e.g. PFOSA, PFOSAA) were often detected in concentrations
below 1 ugL™" or below the limit of quantification making a
comparison of trends difficult.

In general, no correlations between PFC concentrations in
human blood and age of the blood donors could be observed with
one exception, for which PFHxS levels were reported to be
higher in children than in adults. This could be related to an
increased contact of children with carpeted floors containing
PFHxS. Obvious higher PFC contamination were found in
males than in females possibly due to elimination by lactation,
pregnancy and menstrual bleeding of women.

PFCs in marine biota

The comparability of PFC trends in marine animals is limited,
due to the low number of samples in most studies. Second,
seasonal variations of the PFC contamination in the animals due
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to different diet and third, differences in age and sex of the
animals were not considered in most studies. Fourth, the PFC
contamination often varied between different parts of the body
depending on the time period of exposure. As PFC bind to
proteins in liver and blood, accumulation in biota of higher
trophic levels is controlled by a dynamic equilibrium between
uptake and elimination.””*! Thus, exposure experiments over a
period of only a few days often lead to higher PFC amounts
in blood than in the accumulating organs resulting in the
assumption that blood is higher contaminated than liver or other
organs. Fifth, marine organisms are often also contaminated
with PFOS precursor compounds (e.g. PFOSA, N-MeFOSA,
N-EtFOSA)!'®%! that can metabolise to PFOS,!'** and with
branched chain PFOS isomers which were not quantified.['?”!
Thus, incorrect conclusions concerning PFOS burden could
be done. Finally, the PFC concentrations increase significantly
with increasing trophic levels®! and species-specific differ-
ences were observed.!'”! Therefore only animals of the same
species can be compared directly although this precondition is
difficult to fulfil because of limited numbers of samples and
limited studies for one species. Therefore, abiotic matrices like
sediments or lower trophic organisms might be better indicators
for temporal trends of PFCs than animals of higher trophic
levels.”* However, temporal trend studies in different marine
mammal species showed similar trends.

PFOS concentrations of ringed seal livers collected from
the Canadian Arctic initially showed an increasing temporal
trend until the end of the 1990s, followed by a decline from
~2000-05. A similar concentration gradient was found for sea
otters from Alaska and from California and for harbour seals
from the German Bight. In contrast, continued increasing
PFOS trends without subsequent declines were observed in
ringed seals from Greenland (up to 2003), in polar bears from
Greenland (up to 2006) and in melon-headed whales from Japan
(up to 2006). One explanation for the differences might be
the remoteness of Greenland Sea and Arctic Ocean from
industrialised regions. Thus, in these regions the PFC declines
possibly might occur a few years later than in industrialised
regions caused by the very slow transportation of PFCs via
ocean currents that were assumed to be one of the possible
sources for PFCs in Arctic regions.!'*" The missing decline for
PFOS concentrations in Japanese melon-headed whales could
not be explained. Interestingly the PFOS values in human blood
of Japanese people did not show a decline, either.

Overall, the PFOS contamination of seabirds was lower than
that of other marine animals of similar trophic levels. In some
seabirds PFCAs dominated the PFC pattern instead of PFOS
with PFTriDA being the predominant acid in liver. This obser-
vation is in contrast to other wildlife animals, in which the
prominent PFCA typically is PFNA or PEUnDA. Thus, seabirds
probably have a higher biomagnification potential for PFCAs
than marine mammals. The few temporal trend studies on
seabirds indicate an increase of PFOS and PFTriDA concentra-
tions over the years possibly reaching a plateau during the
1990s. As there were only a few data available until 200304,
a decline, as it was seen for humans and marine mammals, could
not be observed.

Trend studies on fish were available only for whole fish
tissues. An increase of PFOS burden of lake trout from Lake
Ontario was found between 1980 and 2001-04. The longer chain
PFCAs (e.g. PFNA, PFUnDA, PFTriDA) and PFOS were the
most abundant acids, whereas PFUnDA often had the highest
values.
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Regarding the overall PFC pattern, for most of the biota
species PFOS was the predominant PFC. Branched PFOS
isomers were often not calculated because these isomers were
usually not completely chromatographically separated and
standards were lacking.['*”'*?! A study on the distribution of
isomers in biota, water and sediment from the North American
environment supported the hypothesis that long-range transport
oflinear volatile precursors, subsequent degradation and deposi-
tion contribute to the presence of linear PFCAs in remote
regions.[*®!

PFOA and PFNA are the predominant PFCAs that have been
produced and applied." The environmental presence of longer
chain PFCAs (C,(—C;5) may partly be a result of impurities of
longer carbon chain compounds in the technical products and
partly due to atmospheric degradation of other long chain PFCs
such as FTOHs. In general, PFOA is only a minor contributor
to the overall burden of PFCAs in all marine biota samples. In
marine mammals the dominant PFCA is PFNA, whereas the
concentrations of longer chain PFCAs generally decreased with
increasing chain length (from C;( to Cys). This is contrary to
their bioaccumulation potential, which normally increases with
increasing chain length!*?! but in accordance with the observed
decrease of atmospheric FTOH concentration with increasing
chain length.[89]

For seabirds and fish the PFC pattern was different from that
in marine mammals. In fish PFNA, PFUnDA and PFTriDA were
the most abundant PFCAs with PFUnDA as the predominant
acid. In seabirds PFUnDA and PFTriDA are the most abundant
PFCAs.['%113] Shorter chain PFCAs and PFSAs (e.g. PFBA,
PFHxA, PFBS, PFHxS) were mostly not analysed or not
detected. PFHXA was found in seabirds at low concentrations
(several nanograms per gram (wet weight)). Remarkable
amounts of PFHxS were reported in birds from several locations
in Europe (up to 120ngg™" ww). In marine mammals the C,-
and C¢-PFCAs were mostly not detected, whereas the PFSAs
(e.g. PFHxS, PFBS) were detected in some animals at a low
range of nanograms per gram (wet weight). In 2005, it was the
first time that PFBS was reported in wildlife found in harbour
seals from the Dutch Wadden Sea collected in 2002.1'") After
the voluntary phase-out of PFOS by the main manufacturer,
this compound was announced as the official successor for
PFOS-related products'”! as PFBS was not supposed to be
bioaccumulative (see http://www.3m.com). Polar bears showed
the highest amounts of PFHxS among mammals, but unfortu-
nately PFBS was not analysed.

The comparison of the odd and even-chain-pattern showed
that in all three animal groups (i.e. marine mammals, seabirds,
fish) the odd chain PFCA concentration exceeded the corre-
sponding shorter even PFCA."7?%1931 0dd-chain length PFCAs
are supposed to be more bioaccumulative than even-chain
length PECAs.™®") However, the reason for the different profiles
in mammals, fish and birds is unknown.”””!

PFOSA is known to be an intermediate in the production
process of several PFCs and it also appears in mammals as a
metabolic product of N-EtFOSA.***! In mammals, PFOSA
can rapidly be metabolised to PFOS.P*! PFOSA concentrations
in cetaceans were often higher than those of PFOS, whereas
concentrations in seabirds and in marine fish were generally
low. High amounts in fish probably indicate different sources of
exposure.””) However, degradation of PFOSA, N-EtFOSA and
other precursor substances of PFOS may contribute to PFOS
levels in marine biota and also may inflate estimated biomagni-
fication values within marine food webs.['+’!
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In conclusion, the recent replacement of POSF based com-
pounds by shorter chain length compounds reduced the direct
emissions of PFOS, but the continued production of its precursor
compounds (e.g. FTOHs, FOSAs, FOSEs) and biodegradation
might result in further accumulation of PFOS.”®! PFHxS con-
tamination of humans and marine biota was relatively high.
Thus, further studies on PFHxS contamination are necessary.
In the future, other shorter chain PFCs should be observed
thoroughly as their production and use might increase. Longer
chain PFCAs (e.g. PFNA, PFUnDA, PFTriDA) should be
included in monitoring programs as some biota species show
relative high accumulation of these compounds. Further trend
studies on fish and birds including their food webs in connection
with an assessment of human exposure on PFCs are
recommended.
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