Cu and Pb accumulation by the marine diatom Thalassiosira weissflogii in the presence of humic acids
Paula Sánchez-Marín A B D , Vera I. Slaveykova C and Ricardo Beiras A BA Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Estrada Colexio Universitario s/n, E-36310 Vigo, Galicia, Spain.
B Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, Illa de Toralla, E-36331 Vigo, Galicia, Spain.
C Environmental Biophysical Chemistry, GR-SLV-IIE-ENAC, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland.
D Corresponding author. Email: paulasanchez@uvigo.es
Environmental Chemistry 7(3) 309-317 https://doi.org/10.1071/EN10015
Submitted: 19 February 2010 Accepted: 15 April 2010 Published: 22 June 2010
Environmental context. Dissolved organic matter protects aquatic microorganisms from toxic metals by complexing and decreasing the concentration of the biologically reactive species such as free metal ions. However, there are some cases of enhancement of toxic effects when humic acids are present, which is thought to be due to effects of adsorbed humic acids on cell membranes. For a marine diatom, humic acids adsorbed to cell surfaces enhanced metal adsorption, whereas intracellular metal contents decreased as a result of metal binding by humic acids. These findings suggest that the diatom wall, the frustule, presents a barrier against direct effects of adsorbed humic acids on the plasma membrane.
Abstract. Metal complexation by dissolved organic matter, as humic acids, is considered to decrease metal bioavailability by lowering the free metal ion concentration. However, dissolved organic matter adsorption on cell surfaces can modify cell membrane properties, which can also influence metal uptake. Copper and lead accumulation and internalisation by the marine diatom Thalassiosira weissflogii were studied in the absence and presence of humic acids, and adsorption of humic acids to cell surfaces was evaluated. Both Pb and Cu intracellular concentrations decreased in the presence of humic acids according to labile metal concentrations measured by anodic stripping voltammetry, whereas total (intracellular plus adsorbed) metal content was enhanced in the presence of humic acids, probably owing to enhanced metal plus humics adsorption to cell surfaces. The results of the present work stress the importance of differentiating between intracellular and total cellular metal in bioavailability studies, and suggest that the silica frustule of diatoms represents a barrier against humic acids effects on cell membranes.
Additional keywords: anodic stripping voltammetry, DOM, metal bioavailability.
Acknowledgements
This work was partially funded by research projects CTM2006–13880-C03–01/MAR and CTM2009–10908 (Spanish Government). ICP-MS measurements were performed in the Centro de Apoio Científico Tecnolóxico á Investigación (CACTI) of the University of Vigo. We thank Damián Costas for the culture of the algae in the marine facilities of ECIMAT (University of Vigo). P. Sánchez-Marín was supported by the Spanish Ministry of Education and Science, Spanish Government. V. Slaveykova acknowledges the financial support of the Swiss National Science Foundation PP022 118989.
[1]
[2]
[3]
[4]
P. G. C. Campbell ,
O. Errécalde ,
C. Fortin ,
V. P. Hiriart-Baer ,
B. Vigneault ,
Metal bioavailability to phytoplankton – applicability to the biotic ligand model.
Comp. Biochem. Phys. C 2002
, 133, 189.
[5]
[6]
R. L. Wershaw ,
Model for humus in soils and sediments.
Environ. Sci. Technol. 1993
, 27, 814.
| Crossref | GoogleScholarGoogle Scholar |
[7]
E. Tipping ,
The adsorption of aquatic humic substances by iron oxides.
Geochim. Cosmochim. Acta 1981
, 45, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
P. G. C. Campbell ,
M. R. Twiss ,
K. J. Wilkinson ,
Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota.
Can. J. Fish. Aquat. Sci. 1997
, 54, 2543.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
V. B. Myers ,
R. L. Iverson ,
R. C. Harris ,
The effect of salinity and dissolved organic matter on surface charge characteristics of some euryhaline phytoplankton.
J. Exp. Mar. Biol. Ecol. 1975
, 17, 59.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
K. Knauer ,
J. Buffle ,
Adsorption of fulvic acid on algal surfaces and its effect on carbon uptake.
J. Phycol. 2001
, 37, 47.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
V. I. Slaveykova ,
K. J. Wilkinson ,
A. Ceresa ,
E. Pretsch ,
Role of fulvic acids on lead bioaccumulation by Chlorella kesslerii.
Environ. Sci. Technol. 2003
, 37, 1114.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
C. Lamelas ,
K. J. Wilkinson ,
V. I. Slaveykova ,
Influence of the composition of natural organic matter on Pb bioavailability to microalgae.
Environ. Sci. Technol. 2005
, 39, 6109.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
F. Galvez ,
A. Donini ,
D. S. Smith ,
M. J. O’Donnell ,
C. M. Wood ,
A matter of potential concern: natural organic matter alters the electrical properties of fish gills.
Environ. Sci. Technol. 2008
, 42, 9385.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
L. Parent ,
M. R. Twiss ,
P. G. C. Campbell ,
Influences of natural dissolved organic matter on the interaction of aluminum with microalga Chlorella: a test of the free-ion model of trace metal toxicity.
Environ. Sci. Technol. 1996
, 30, 1713.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
B. Vigneault ,
A. Percot ,
M. Lafleur ,
P. G. C. Campbell ,
Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances.
Environ. Sci. Technol. 2000
, 34, 3907.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
C. N. Glover ,
C. M. Wood ,
The disruption of Daphnia magna sodium metabolism by humic substances: mechanism of action and effect of humic substance source.
Physiol. Biochem. Zool. 2005
, 78, 1005.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
P. Sánchez-Marín ,
J. I. Lorenzo ,
R. Blust ,
R. Beiras ,
Humic acids increase dissolved lead bioavailability for marine invertebrates.
Environ. Sci. Technol. 2007
, 41, 5679.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
C. Lamelas ,
V. I. Slaveykova ,
Pb uptake by the freshwater alga Chlorella kesslerii in the presence of dissolved organic matter of variable composition.
Environ. Chem. 2008
, 5, 366.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[19]
C. Lamelas ,
J. P. Pinheiro ,
V. I. Slaveykova ,
Effect of humic acid on Cd(II), Cu(II), and Pb(II) uptake by freshwater algae: kinetic and cell wall speciation considerations.
Environ. Sci. Technol. 2009
, 43, 730.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
C. Lamelas ,
V. I. Slaveykova ,
Comparison of Cd(II), Cu(II) and Pb(II) biouptake by green algae in the presence of humic acid.
Environ. Sci. Technol. 2007
, 41, 4172.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
J. I. Lorenzo ,
O. Nieto ,
R. Beiras ,
Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater.
Aquat. Toxicol. 2002
, 58, 27.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[22]
J. I. Lorenzo ,
R. Beiras ,
V. K. Mubiana ,
R. Blust ,
Copper uptake by Mytilus edulis in the presence of humic acids.
Environ. Toxicol. Chem. 2005
, 24, 973.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
J. I. Lorenzo ,
O. Nieto ,
R. Beiras ,
Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids.
Environ. Toxicol. Chem. 2006
, 25, 36.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
R. L. Malcolm ,
P. MacCarthy ,
Limitations in the use of commercial humic acids in water and soil research.
Environ. Sci. Technol. 1986
, 20, 904.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
[26]
[27]
F. Berbel ,
J. M. Díaz-Cruz ,
C. Ariño ,
M. Esteban ,
F. Mas ,
J. Ll. Garcés ,
J. Puy ,
Voltammetric analysis of heterogeneity in metal ion binding by humics.
Environ. Sci. Technol. 2001
, 35, 1097.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[28]
I. Christl ,
C. J. Milne ,
D. G. Kinniburgh ,
R. Kretzchmar ,
Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding.
Environ. Sci. Technol. 2001
, 35, 2512.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
C. J. Milne ,
D. G. Kinniburgh ,
W. H. Van Riemsdijk ,
E. Tipping ,
Generic NICA–Donnan model parameters for metal-ion binding by humic substances.
Environ. Sci. Technol. 2003
, 37, 958.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
[31]
[32]
R. M. Town ,
M. Filella ,
Determination of metal ion binding parameters for humic substances. Part 2: Utility of ASV pseudo-polarography.
J. Electroanal. Chem. 2000
, 488, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[33]
F. L. Greter ,
J. Buffle ,
W. Haerdi ,
Voltammetric study of humic and fulvic substances. Part I. Study of their complexing properties with lead.
J. Electroanal. Chem. 1979
, 101, 211.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[34]
V. I. Slaveykova ,
Predicting Pb bioavailability to freshwater microalgae in the presence of fulvic acid: algal cell density as a variable.
Chemosphere 2007
, 69, 1438.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[35]
M.-A. Benincasa ,
G. Cartoni ,
N. Imperia ,
Effects of ionic strength and electrolyte composition on the aggregation of fractionated humic substances studied by flow field-flow fractionation.
J. Sep. Sci. 2002
, 25, 405.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
N. A. Wall ,
G. R. Choppin ,
Humic acids coagulation: influence of divalent cations.
Appl. Geochem. 2003
, 18, 1573.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
A. Siripinyanond ,
S. Worapanyanond ,
J. Shiowatana ,
Field-flow fractionation–inductively coupled plasma mass spectrometry: an alternative approach to investigate metal-humic substances interaction.
Environ. Sci. Technol. 2005
, 39, 3295.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[38]
[39]
P. Sánchez-Marín ,
J. Santos-Echeandía ,
M. Nieto-Cid ,
X. A. Álvarez-Salgado ,
R. Beiras ,
Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae.
Aquat. Toxicol. 2010
, 96, 90.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[40]
M. S. Hale ,
J. G. Mitchell ,
Functional morphology of diatom frustule microstructures: hydrodynamic control of Brownian particle diffusion and advection.
Aquat. Microb. Ecol. 2001
, 24, 287.
| Crossref | GoogleScholarGoogle Scholar |