Supplementary Material

Rare earth elements binding humic acids: NICA-Donnan modelling

Alba Otero-Fariña^{A,G}, *Noémie Janot*^{A,B,C}, *Rémi Marsac*^D, *Charlotte Catrouillet*^E and *Jan E. Groenenberg*^{A,F,*}

^ALaboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Centre national de la recherche scientifique (CNRS), Université de Lorraine, LIEC – UMR 7360,

F-54501 Vandoeuvre-lès-Nancy, France

^BInstitut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), LSE – UMR 1120, F-54501 Vandoeuvre-lès-Nancy, France

^CInstitut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), ISPA – UMR 1391, F-33140 Villenave d'Ornon, France

^DGéosciences Rennes, Centre national de la recherche scientifique (CNRS),

Université de Rennes UMR 6118, F-35000 Rennes, France

^EInstitut de physique du globe de Paris, Centre national de la recherche scientifique (CNRS), Université Paris Cité, F-75005 Paris, France

^FDepartment of Environmental Sciences, Soil Chemistry and Chemical Soil Quality group, Wageningen University, PO Box 47, 6700 AA Wageningen, Netherlands

^GPresent address: School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

*Correspondence to: Email: <u>bertjan.groenenberg@wur.nl</u>

Ion	H^+	Fe ³⁺		Al ³⁺		Cu ²⁺
Parameter	Generic	Generic	Adapted from LFER	Generic	Adapted from LFER	Generic
b	0.49					
Q _{max,1} (eq/kg)	3.15					
Q _{max,2} (eq/kg)	2.55					
p 1	0.62					
p 2	0.41					
$log \tilde{K}_{i,1}$	2.93	3.5	3.95	-1.05	2.09	2.23
$log { ilde K}_{i,2}$	8.00	17.5		8.89	9.07	6.85
n _{i,1}	0.81	0.30		0.40		0.56
n _{i,2}	0.63	0.25		0.30		0.34

Table S1. NICA–Donnan binding parameters obtained in the literature modelled for generic HA, for proton and competitor metals.

Sources: H⁺, Fe³⁺, Al³⁺ and Cu²⁺ Generic are from Milne *et al.* (2003); Fe³⁺ and Al³⁺ Adapted from LFER (this study)

Fig. S1. Predicted speciation of REEs bound to HA as a function of pH. Marsac *et al.* (2010) dataset was excluded from the plot for the sake of clarity, due to the limited pH range of these experiments, performed in different conditions.

Fig. S2. Residuals distribution of parameterization dataset as a function of solution pH and original dataset.

Fig. S3. Calculated speciation of La (a) and Lu (b) in bulk solution (solid lines) and in the Donnan volume (dashed lines) using generic HA binding parameters.

Fig. S4. Predicted speciation of REEs bound to HA as a function of REE/HA ratio for the Marsac *et al.* (2010) dataset.

Fig. S5. Percentage of Fe^{III} (top) or Al^{III} (bottom) retained by a 5-kDa filter *v*. pH in presence of REE, as experimentally determined (symbols) or calculated (lines) for [HA] = 12 mg L⁻¹, \sum [REE] = [Al/Fe] = 10 μ M in 0.01 M NaCl. Black lines correspond to default generic parameters, red lines to Fe/Al parameters adapted according to the LFER given in Fig. 4.

References

Marsac R, Davranche M, Gruau G, *et al.* (2010) Metal loading effect on rare earth element binding to humic acid: experimental and modelling evidence. *Geochimica et Cosmochimica Acta* **74**(6), 1749–1761. doi:10.1016/j.gca.2009.12.006

Marsac R, Davranche M, Gruau G, *et al.* (2012) Aluminium competitive effect on rare earth elements binding to humic acid. *Geochimica et Cosmochimica Acta* **89**, 1–9. doi:10.1016/j.gca.2012.04.028

Milne CJ, Kinniburgh DG, van Riemsdijk WH, *et al.* (2003) Generic NICA–Donnan model parameters for metal–ion binding by humic substances. *Environmental Science & Technology* **37**(5), 958–971. doi:10.1021/es0258879

Pourret O, Davranche M, Gruau G, *et al.* (2007) Rare earth elements complexation with humic acid. *Chemical Geology* **243**(1–2), 128–141. doi:10.1016/j.chemgeo.2007.05.018

Sonke JE, Salters VJM (2006) Lanthanide–humic substances complexation. I. Experimental evidence for a lanthanide contraction effect. *Geochimica et Cosmochimica Acta* **70**(6), 1495–1506. doi:10.1016/j. gca.2005.11.017