Supplementary Material

Cellular uptake and biotransformation of arsenate by freshwater phytoplankton under salinity gradient revealed by single-cell ICP-MS and CT-HG-AAS

Md Shah Alam^{A,}, Shogo Fujisawa^A, Masahiko Zuka^B, Yinghan Zai^A, Asami S. Mashio^C, Ismail M. M. Rahman^D, Kuo H. Wong^{C,*} and Hiroshi Hasegawa^{C,*}*

^AGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

^BDepartment of Forensic Medicine and Pathology, Graduate School of Medicine Science, Kanazawa University, Japan

^CInstitute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan

^DInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan

*Correspondence to: Email: <u>alam.shah@stu.kanazawa-u.ac.jp</u>, <u>wong@se.kanazawa-u.ac.jp</u>, <u>hhiroshi@se.kanazawa-u.ac.jp</u>

Table S1. Chemical composition of modified C medium and PIV metal used in this stud	ly.
---	-----

Reagent	Concentration
UPW + 35‰ artificial sea water	1 L
Tris(hydroxymethyl)aminomethane	500 mg L^{-1}
$Ca(NO_3)_2 \cdot 4H_2O$	150 mg L^{-1}
KNO ₃	100 mg L^{-1}
KH ₂ PO ₄	$30.7 \text{ mg L}^{-1} (225.6 \ \mu \text{mol L}^{-1})$
	136.1 μ g L ⁻¹ (1.0 μ mol L ⁻¹)
$MgSO_4 \cdot 7H_2O$	40 mg L^{-1}
Vitamin B12 stock solution	$1 \ \mu g \ L^{-1}$
Thiamine-HCl stock solution	$1 \ \mu g \ L^{-1}$
Biotin stock solution	$1 \ \mu g \ L^{-1}$
PIV metal	3 mL L^{-1}
Chemical composition of PIV metal	
Na ₂ EDTA • $2H_2O$	1 g L ⁻¹
$FeCl_3 \cdot 6H_2O$	196 mg L^{-1}
$MnCl_2 \cdot 4H_2O$	36 mg L^{-1}
$ZnSO_4 \cdot 7H_2O$	22 mg L^{-1}
$CoCl_2 \cdot 6H_2O$	4 mg L^{-1}
$Na_2Mo_4 \cdot 2H_2O$	2.5 mg L^{-1}

Table S2. Chemical composition of artificial seawater used in this study.

Reagent	Composition
NaF	2.9 mg L^{-1}
H ₃ BO ₃	25 mg L^{-1}
$SrCl_2 \cdot 6H_2O$	12.2 mg L^{-1}
KBr	$100 \mathrm{~mg~L}^{-1}$
NaHCO ₃	196 mg L^{-1}
KCl	683 mg L^{-1}
$CaCl_2 \cdot 2H_2O$	1.4346 g L^{-1}
NaCl	23.954 g L^{-1}
Na ₂ SO ₄	$4.004 \mathrm{~g~L}^{-1}$
$MgCl_2 \cdot 6H_2O$	$10.787~{ m g~L}^{-1}$

 Table S3. Device conditions and optimization requirements for SC-ICP-MS.

Experimental condition	Performance check		
Nebulizer gas flow rate	$0.45 \mathrm{~L~min}^{-1}$	Be	>4000
Makeup gas flow rate	$0.7 \mathrm{~L~min}^{-1}$	In	>30000
Dwell time	50 µs	U	>2000
Stabilization time	0 µs	Ce ^{2+/} Ce	≤0.03
Measurement mode	Oxygen DRC	CeO	≤0.025
Target molecule	AsO		
Oxygen gas flow rate	$0.5 \mathrm{~L~min}^{-1}$		
AFT	250 V		

Table S4. Cell status of *S. paradoxum* and *P. duplex* under salinity stress (*S. paradoxum*,1‰; *P. duplex*, 2‰).

	S. paradoxum (1‰)				
State	Condition	Fragmentation	State	Condition	Fragmentation
		(%)			(%)
А	Normal	0.0	A	Normal	11.0
В	Shortening of a	18.3	В	Farmless/	37.6
	cell protrusion			Unstructured	
С	Swelling	29.3	C	Aggregation	
D	Karyorrhexis	43.6	D	Initial stage of swelling	27.8
E	Pyknosis		E	Color phase change	
F	Karyolysis,	8.7	F	Late stage of swelling	24.2
	Karyorrnexis				

Fig. S1. Microscopic images of three phytoplankton species, (a) *S. paradoxum*, (b) *P. duplex*, and (c) *S. acutus*, at varying salinity gradients on 14^{th} day of culture. Culture conditions: As^V, 0.1 µmol L⁻¹ and PO₄³⁻, 1.0 µmol L⁻¹.

Fig. S2. As mass distribution histograms of S. *acutus* under 5 ‰ salinity stress conditions at 14 days culture. Culture condition: As^V, 0.1 μ mol L⁻¹ and PO₄³⁻, 1.0 μ mol L⁻¹.

Fig. S3. i) Calibration curve optimization and sensitivity comparison for phosphorus quantification in single cells. The graph illustrates the background equivalent concentration (BEC) obtained through the optimization of measurement conditions. ii) Phosphorus mass distribution histograms of three freshwater phytoplankton under different salinity stress conditions at 14 days culture. a) *S. paradoxum, P. duplex*, and *S. acutus* (0 and 2‰ salinity levels), b) *S. acutus* (5‰ salinity level). Culture condition: PO_4^{3-} , 1.0 µmol L⁻¹.

Fig. S4. Time-resolved measurements of arsenic (As) during SC-ICP-MS experiments at 0‰ salinity of *S. acutus*. The graph depicts the intensity of arsenic signals as a function of peak area (counts) obtained at various dwell times (10, 20, 30, 50, and 60 microseconds) at 14 days culture. The y-axis represents signal intensity, while the x-axis represents the peak area. Culture condition: As^V, 0.1 μ mol L⁻¹ and PO₄³⁻, 1.0 μ mol L⁻¹.

Fig. S5. Time-resolved measurements of phosphorus (P) behavior during SC-ICP-MS experiments at 0‰ salinity of *S. acutus*. The graph showcases the intensity of phosphorus signals as a function of peak area (counts) recorded at different dwell times (10, 20, 30, 50, and 60 microseconds) at 14 days culture. The y-axis denotes signal intensity, while the x-axis represents the peak area. Culture condition: PO_4^{3-} , 1.0 µmol L⁻¹.