Supplementary Material

Soil decontamination by natural minerals: a comparison study of chalcopyrite and pyrite

Yanhua Wu^A , Yuchan Li^A and Hong $Wang^{A,*}$

^ASchool of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China

*Correspondence to: Email: <u>hongwang@cumt.edu.cn</u>

Soil decontamination by natural minerals: a comparison study of chalcopyrite and pyrite

Yanhua Wu, Yuchan Li, Hong Wang*

School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China

[†] These authors contributed equally to this work.

Corresponding author: *E-mail address: <u>hongwang@cumt.edu.cn</u>

List of Supporting Information

Table S1. The components of the soil sample.

Table S2. The primary chemical existence elements of NCP.

Table S3. The primary chemical existence elements of NP.

Table S4. The TOC values of TCH and PHE in heterogeneous PMS/H_2O_2 activation systems.

Table S5. Kinetic parameters obtained from first-order models at different conditions.

Table S6. The related parameters of lake water and river water.

Figure S1. The mineralization efficiencies of TCH and PHE via PMS/H₂O₂ activation by natural minerals.

Figure S2. Linear transform $-\ln(C/C_0)$ of kinetic curves of NCP heterogeneous systems for (a) TCH and (b) PHE degradation; NP heterogeneous systems for (c)TCH and (d) PHE degradation.

Figure S3. Kinetic constants of different (a) NCP dosage, (b) oxidants dosage, (c) initial pH value for PHE degradation.

Figure S4. Zeta potential at different pH values and the zero point charge of NCP and NP.

Figure S5. The effect of HA on TCH degradation in soil with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; The effect of HA on PHE degradation in soil with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system.

Figure S6. The effect of HA on TCH degradation in water with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; The effect of HA on PHE degradation in water with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system.

Figure S7. TCH removal efficiencies within 50 min in different real water samples with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; PHE removal efficiencies within 7 h in different real water samples with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system.

Components	Content (%)
Na ₂ O	1.872
MgO	2.295
Al_2O_3	16.094
SiO_2	63.976
P_2O_5	0.205
SO_3	0.102
Cl	0.055
K_2O	2.490
CaO	6.605
TiO_2	0.839
Cr_2O_3	0.015
MnO	0.082
Fe_2O_3	4.993
NiO	0.012
CuO	0.008
ZnO	0.009
SrO	0.019
ZrO_2	0.022
Bi ₂ O ₃	0.009

Table S1. The components of the soil sample.

Components	Content (%)
Mg	0.789
Al	0.320
Si	5.330
Р	0.012
S	25.837
Cl	0.068
Κ	0.024
Ca	3.938
Cr	0.033
Mn	0.048
Fe	32.604
Со	0.090
Cu	30.011
Zn	0.600
As	0.035
Se	0.010
Sr	0.015
Rh	0.029
Sb	0.109
Pb	0.096

Table S2. The primary chemical existence elements of NCP.

Components	Content (%)
Na	0.315
Mg	0.116
Al	0.670
Si	1.338
Р	0.025
S	40.997
Cl	0.076
Κ	0.170
Ca	0.248
Ti	0.157
Cr	0.044
Mn	0.09
Fe	55.517
Cu	0.077
Zn	0.013
As	0.025
Sb	0.143

 Table S3. The primary chemical existence elements of NP.

Table S4. The TOC values of TCH and PHE in heterogeneous PMS/H_2O_2 activation

systems.

Reaction system	Reaction time (h)	TOC (g/L)	Sample volume
Blank (TCH)	0	10.05	300.0 µL
NCP/PMS/H ₂ O ₂ /TCH	4	3.15	300.0 µL
NP/PMS/H ₂ O ₂ /TCH	4	3.54	300.0 µL
Blank (PHE)	0	72.22	300.0 µL
NCP/PMS/H ₂ O ₂ /PHE	24	5.03	300.0 µL
NP/PMS/H ₂ O ₂ /PHE	24	39.17	300.0 µL

Reaction system	Stage-I	Stage	e-II
	k_1	k_2	\mathbf{R}^2
NCP/PMS/H ₂ O ₂ /TCH	0.10095	0.00866	0.98951
NCP/PMS/TCH	0.07681	0.00581	0.96684
PMS/H ₂ O ₂ /TCH	0.01440	0.00496	0.93384
PMS/TCH	0.00546	0.00435	0.99184
NCP/H ₂ O ₂ /TCH	0.00558	0.00115	0.98581
H ₂ O ₂ /TCH	0.0009646	0.0009051	0.92716
NCP/PMS/H ₂ O ₂ /PHE	0.71539	0.07845	0.87110
NCP/PMS/PHE	0.60148	0.06975	0.98388
PMS/H ₂ O ₂ /PHE	0.05572	0.05025	0.97128
PMS/PHE	0.25786	0.02793	0.94009
NCP/H ₂ O ₂ /PHE	0.09784	0.03213	0.99001
H ₂ O ₂ /PHE	0.05456	0.02991	0.97315
NP/PMS/H ₂ O ₂ /TCH	0.06777	0.00832	0.99251
NP/PMS/TCH	0.05980	0.00366	0.99258
PMS/H ₂ O ₂ /TCH	0.01440	0.00496	0.93384
PMS/TCH	0.00546	0.00435	0.99184
NP/H ₂ O ₂ /TCH	0.00201	0.00284	0.97745
H ₂ O ₂ /TCH	0.0009646	0.0009051	0.92716
NP/PMS/H ₂ O ₂ /PHE	0.12704	0.03651	0.94192
NP/PMS/PHE	0.07602	0.03447	0.97479
PMS/H ₂ O ₂ /PHE	0.05572	0.05025	0.97128
PMS/PHE	0.25786	0.02793	0.94009
NP/H ₂ O ₂ /PHE	0.10325	0.02771	0.96986
H ₂ O ₂ /PHE	0.05456	0.02991	0.97315

 Table S5. Kinetic parameters obtained from first-order models at different conditions.

Parameter	Lake water	River water
pH	7.32	7.62
TOC (mg/L)	9.05	14.38
Ca (mg/L)	36.18	92.68
Mg (mg/L)	19.28	19.07
Fe (mg/L)	0.0211	0.0134

 Table S6. The related parameters of lake water and river water.

Figure S1. The mineralization efficiencies of TCH and PHE via PMS/H_2O_2 activation by natural minerals. Experimental conditions: $[catalyst]_0 = 0.75 \text{ g/L}$, $[PMS]_0 = [H_2O_2]_0 = 1.23 \text{ mM}$, $[TCH]_0 = 500 \text{ mg/kg}$, $[PHE]_0 = 50 \text{ mg/kg}$, T = 22 °C, pH (unadjusted), reaction time of 4 h with TCH and 24 h with PHE.

Figure S2. Linear transform $-\ln(C/C_0)$ of kinetic curves of NCP heterogeneous systems for (a) TCH and (b) PHE degradation; NP heterogeneous systems for (c)TCH and (d) PHE degradation. Experimental conditions: [catalyst]₀ = 0.75 g/L, [PMS]₀ = [H₂O₂]₀ = 1.23 mM, [TCH]₀ = 500 mg/kg, [PHE]₀ = 50 mg/kg, T = 22 °C, pH (unadjusted).

Figure S3. Kinetic constants of different (a) NCP dosage, (b) oxidants dosage, (c) initial pH value for PHE degradation. Experimental conditions: (a) $[PMS]_0 = [H_2O_2]_0 = 1.23 \text{ mM}$, pH (unadjusted), $[PHE]_0 = 50 \text{ mg/kg}$, T = 22 °C; (b) $[\text{catalyst}]_0 = 0.75 \text{ g/L}$, pH (unadjusted), $[PHE]_0 = 50 \text{ mg/kg}$, T = 22 °C; (c) $[\text{catalyst}]_0 = 0.75 \text{ g/L}$, $[PMS]_0 = [H_2O_2]_0 = 2.05 \text{ mM}$, $[PHE]_0 = 50 \text{ mg/kg}$, T = 22 °C.

Figure S4. Zeta potential at different pH values and the zero point charge of NCP and NP.

Figure S5. The effect of HA on TCH degradation in soil with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; The effect of HA on PHE degradation in soil with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system. Experimental conditions: $[catalyst]_0 = 0.75 \text{ g/L}, [PMS]_0 =$

 $[H_2O_2]_0 = 1.23 \text{ mM}, [TCH]_0 = 500 \text{ mg/kg}, [PHE]_0 = 50 \text{ mg/kg}, T = 22 \text{ °C}, pH (unadjusted).$

Figure S6. The effect of HA on TCH degradation in water with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; The effect of HA on PHE degradation in water with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system. Experimental conditions: $[catalyst]_0 = 0.75 \text{ g/L}$, $[PMS]_0 = [H_2O_2]_0 = 1.23 \text{ mM}$, $[TCH]_0 = 50 \text{ mg/L}$, $[PHE]_0 = 5 \text{ mg/L}$, T = 22 °C, pH (unadjusted).

Figure S7. TCH removal efficiencies within 50 min in different real water samples with (a) NCP/PMS/H₂O₂ system and (b) NP/PMS/H₂O₂ system; PHE removal efficiencies within 7 h in different real water samples with (c) NCP/PMS/H₂O₂ system and (d) NP/PMS/H₂O₂ system. Experimental conditions: $[catalyst]_0 = 0.75 \text{ g/L}$, $[PMS]_0 = [H_2O_2]_0 = 1.23 \text{ mM}$, $[TCH]_0 = 50 \text{ mg/L}$, $[PHE]_0 = 5 \text{ mg/L}$, T = 22 °C, pH (unadjusted).