Supplementary Material

Analysis of commonly prescribed analgesics using *in-silico* processing of spectroscopic signals: application to surface water and industrial effluents, and comparative study via green and white assessments

Heba T. Elbalkiny^A, Mohamed B. El-Zeiny^B and Sarah S. Saleh^{A,*}

^AAnalytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787 6th October, Giza, Egypt

^BAnalytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), 12582 Al Hadaba Al Wosta, Cairo, Egypt

*Correspondence to: Email: <u>drsarahsalah@gmail.com</u>

Supplementary material

Analysis of Commonly Prescribed Analgesics Using In-silico Processing of Spectral Signals: Application to Surface water and industrial effluents, and Comparative Study Via Green and White Assessments

Heba T. Elbalkiny^a, Mohamed B. El-Zeiny^b, Sarah S. Saleh^{a*}

^{an} Analytical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 11787 6th October, Giza, Egypt

^b Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), 12582 Al Hadaba Al Wosta, Cairo, Egypt

*Corresponding author, e-mail: drsarahsalah@gmail.com

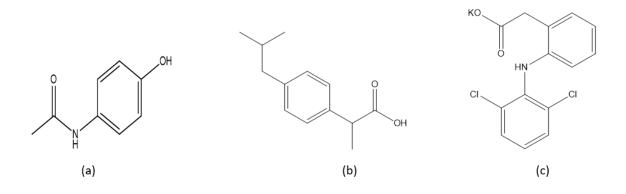


Fig 1SM. chemical structure of (a)PCM, (b) IBU and (c) DCF

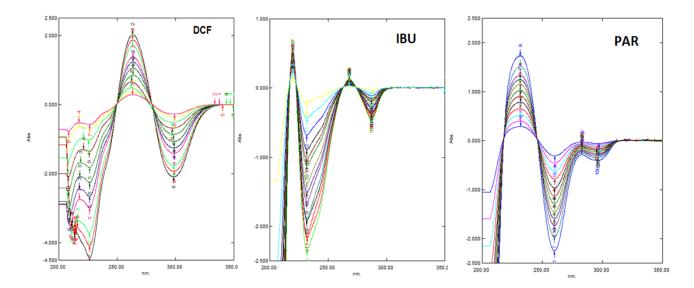


Fig.2SM. D¹ first derivative spectra of DCF (4-30 μg/ml), IBU (1-10 μg/ml) and PAR (2-14 μg/ml).

Table 1SM. The 12 principles of GAC

1	Direct analytical techniques should be applied to avoid sample treatment.
2	Minimal sample size and minimal number of samples are goals
3	In situ measurements should be performed.
4	Integration of analytical processes and operations saves energy and reduces the use of
	reagents.
5	Automated and miniaturized methods should be selected.
6	Derivatization should be avoided.
7	Generation of a large volume of analytical waste should be avoided and proper management
	of analytical waste should be provided.
8	Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at
	a time.
9	The use of energy should be minimized.
10	Reagents obtained from renewable source should be preferred.
11	Toxic reagents should be eliminated or replaced.
12	The safety of the operator should be increased.

	Santos et al	Aguilar- Arteaga et al	Weigel et al	Caban et al	Diuzheva et al	Yehia et al	proposed methods
Reagent							
methanol	6	12	12	12	6	18	
ethanol							8
acetonitrile	8				4		
Hexane	8	8	16	8			
ethyl acetate	4	4	8	4	4		
toluene			6	6			6
chloroform					4		
acetone				4			4
Sulfuric acid		2					
Triethylamine			6				
dichloromethane				8			
formic acid					5		
Energy	1	2	2	2	2	1	0
Occupational hazards	3	3	3	3	3	3	3
Waste	8	8	8	8	8	8	8
Total PPs	38	39	61	55	36	30	29
Eco scale	62	61	39	45	64	70	71

Table 2SM. The calculated penalty points (PPs) and Eco-scales of the reported methods versus the proposed ones.

	Santos et al	Aguilar-Arteaga et al	Weigel et al	Caban et al	Diuzheva et al	Yehia et al	Proposed methods	
Sample treatment	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	external sample pre- and treatment and batch analysis (large number of steps) 0.0	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	external sample pre- and treatment and batch analysis - reduced number of steps (0.3)	
	-0.33090125	-0.429328149	-0.33090125	-0.23247435	0.664961193	-0.23247435	0.323032917	
Sample size	macroanalysis (1000 mL)	macroanalysis (2000 mL)	macroanalysis (1000 mL)	500 ml	0.9 ml	500 ml	10 ml	
in-situ measure	automatic, not miniaturized (0.5)	at-line (0.33)	at-line (0.33)	at-line (0.33)	at-line (0.33)	at-line (0.33)	at-line (0.33)	
No. of steps	4 (0.8)	4 (0.8)	7 (0.2)	5 (0.7)	3 (1)	4 (0.8)	3 (1)	
Automation and Miniaturization	automatic, not miniaturized (0.5)	automatic, not miniaturized (0.5)	semi-automatic, not miniaturized (0.25)	automatic, not miniaturized (0.5)	semi-automatic, miniaturized (0.75)	automatic, miniaturized (1)	semi-automatic, miniaturized (0.5)	
Derivatization	none (1)	none (1) methyl chlor methanoate		DIMETRIS, BSTFA	none	none	none	
	0.070332732	-0.233955247	-0.074962427	-0.140811037	0.386053598	-0.147223744	0.373282033	
Waste	45.5 ml + 60 mg (0.1)	0.2	0.2	0.2	10 ml	535	11	
Multianalyte	-0.0517	0.11666545	-0.0517	-0.0517	-0.0517	0.11666545	0.2854	
No. of analytes / hr	1 sample (0)	2 samples	1 sample / 14 analyte	1 sample / 8 analyte	1 sample/ 11 analyte	2 sample / 3 analyte	4 sample / 3 analyte	
Energy	HPLC - UV- FL (0.5)	HPLC - UV (0.5)	GC-MS (0)	GC-MS (0) HPLC / MS-MS (0)		SPE/Spectro	Spectro	
Bio-based sources	0	0	0	0	0	0	0	
Toxic solvents	Toxic solvents 0.087655371 0.0815369		0.094023602	0.338727686	0.37353808	0.122465765	0.446858646	
Threats	0.8	0.8	0.8	0.8	0.6	0.8	0.8	
Cost/sample	20 \$	20 \$	40 \$	40 \$	45 \$	7 \$	5 \$	
LOD (µg/mL)	2.0	1.0	0.2	0.2	3.3	0.4	0.4	
Accuracy (R%)	71 to 103 %	94-100 %	74 – 87 % 5.0 %	82-107 %	80-102 %	88-114 %	85-97 %	
Precision (RSD%)	7.3 %	7.3 % 2.1 %		6.5 %	4.2 %	3.2 %	3.5 %	

Table 3SM. AGREE reports for the reported methods versus the proposed ones.

	R1: Scope of application			R2: LOD and LOQ			R3: Precision					R4: Accuracy					
RED PRINCIPLES	Method no.	Metho name	L1n	earity	0-100	LOD	LOQ	0-100	RSD% (repeatabil		SD% ducibi	(-1)	0	Relative error (%)	Recovery (%)	0-100	
(analytical performance)	1	AAC	C 2-10.	.5, 4-30	90	0.267 0.80		5 100	0.598).830	100)	1.77	92.26	80	
performance)	2	MCI	,		80	0.353 1.07			0.754					2.23	92.68	70	
	3	SDS	,		100				0.863			80		1.98	94.62	90	
	4	CW	CWT 2-10.5, 5-3			80 0.350 1.06		2 85	1.330 1.581		70		2.17	90.31	60		
	•			ty of rea pact and gradatio		G2: Amo	ount of	reagents and v	G3: Consumption of waste energy and other media			G4: Direct impacts (safety, use of animals and GMOs)				GMOs)	
GREEN PRINCIPLES (green chemistry)	Meth od no.	Method name	Total nun of pictogr		0-100	Reage consump		Waste production	0-100	1-100		Occupationa hazards	il s	Safety of users (0-100)	Use of animals (0 if no, 1 if yes)	Use of GMO (0 if no, 1 if yes)	
	1	AAC	8		70	5		15	75	85		3		85	0	0	
	2	MCR	8		70	5		15	75	85		3		85	0	0	
	3	SDS	8		70	5		15	75	85		3		85	0	0	
	4	CWT	8		70	5		15	75	85		3		85	0	0	
		B1: Cost- efficiency			B2:	B2: Time-efficiency			B3: Requirements				В4: Ор			perational simplicity	
BLUE	Method no.	Method name	l Total cost	0-100	Spean	eed of alysis	0-100) Sample consum ption	Sample consumption (0-100)	L		Other need advanced instrument, sl (0-100)		Miniaturizatio (0-100)	Integration and automation (0-100)	Portability (0-100)	
PRINCIPLES (practical	1	AAC	very low	90	15 n	ninutes	70	10 ml	70	software/ex	cel	90		90	70	75	
side)	2	MCR	very low	90	15 n	ninutes	70	10 ml	70	Matlab		80		80	70	75	
	3	SDS	very low	90	15 n	ninutes	70	10 ml	70	software/ex	cel	90		90	70	75	
	4	CWT	very low	90	15 n	ninutes	70	10 ml	70	Matlab		80		80	70	75	

Table 4SM. Evaluation of White assessment of the proposed methods using RGB-12 algorithms.