Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Source analysis of perfluorocarboxylates in Tokyo Bay during dry weather and wet weather using sewage markers

Michio Murakami A , Chiaki Morita B , Takuya Morimoto B and Hideshige Takada B C
+ Author Affiliations
- Author Affiliations

A ‘Wisdom of Water’ (Suntory), Corporate Sponsored Research Program, Organization for Interdisciplinary Research Projects, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

B Laboratory of Organic Geochemistry (LOG), Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.

C Corresponding author. Email: shige@cc.tuat.ac.jp

Environmental Chemistry 8(4) 355-362 https://doi.org/10.1071/EN10130
Submitted: 1 December 2010  Accepted: 24 January 2011   Published: 19 August 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. As perfluorocarboxylates can be carried by surface runoff to waters and cause adverse effects to aquatic organisms, we evaluated the contributions of wastewater and surface runoff to the concentrations of these compounds in Tokyo Bay during dry and wet weather. Sewage markers revealed that the surface runoff was a significant source of perfluorocarboxylates in the bay during wet weather. This finding leads to a greater understanding of sources and pathways of perfluorocarboxylates in waters.

Abstract. We investigated the occurrence of perfluorocarboxylates (PFCAs) in Tokyo Bay during dry and wet weather and evaluated the contributions of wastewater effluent, untreated wastewater, and surface runoff by using two sewage markers, caffeine and crotamiton. ∑8PFCAs ranged from 11 to 185 ng L–1. Perfluorononanoate (PFNA) was the major species, followed by perfluorooctanoate (PFOA) and perfluoroheptanoate (PFHpA). Principal component analysis followed by multiple linear regression revealed that the PFCAs were derived mainly from wastewater effluent during dry weather, and jointly from wastewater effluent (59%) and combined sewer overflow (41%) during wet weather. We used caffeine-to-crotamiton ratios to evaluate the contributions of untreated wastewater and wastewater effluent. Estimated concentrations of wastewater-derived PFCAs were much lower than observed concentrations during wet weather, indicating the contribution of surface runoff to contamination. During a combined sewer overflow, surface runoff had a significant effect on contamination in the bay.

Additional keywords: combined sewer overflow (CSO), diffuse pollution, non-point source, perfluorinated surfactants (PFSs), perfluorochemicals (PFCs), pharmaceuticals and personal care products (PPCPs), wastewater tracer.


References

[1]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=14e91a9069cf17a00b47907f105e54b6CAS |

[2]  A. G. Paul, K. C. Jones, A. J. Sweetman, A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386.
A first global production, emission, and environmental inventory for perfluorooctane sulfonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyks7%2FJ&md5=63238d1759e406591a922fb0ed3a709cCAS |

[3]  Co-operation on existing chemicals – Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts, ENV/JM/RD(2002)17/FINAL, JT00135607 2002 (Organisation for Economic Co-operation and Development).

[4]  E. A. Kauck, A. R. Diesslin, Some properties of perfluorocarboxylic acids. Ind. Eng. Chem. 1951, 43, 2332.
Some properties of perfluorocarboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xis1GjsQ%3D%3D&md5=a0e88ce77720c8e368d3e6590c1aa910CAS |

[5]  J. P. Giesy, K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339.
Global distribution of perfluorooctane sulfonate in wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVGnurg%3D&md5=e5a5453b4d2a3d83f723af878a2c9adbCAS |

[6]  J. M. Conder, R. A. Hoke, W. de Wolf, M. H. Russell, R. C. Buck, Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995.
Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFWmsw%3D%3D&md5=a5859b58e71eafefd64bade38f26a3c1CAS |

[7]  M. F. Simcik, K. J. Dorweiler, Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters. Environ. Sci. Technol. 2005, 39, 8678.
Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurzF&md5=0004684106f9403ddce92c816f4fece2CAS |

[8]  M. Murakami, E. Imamura, H. Shinohara, K. Kiri, Y. Muramatsu, A. Harada, H. Takada, Occurrence and sources of perfluorinated surfactants in rivers in Japan. Environ. Sci. Technol. 2008, 42, 6566.
Occurrence and sources of perfluorinated surfactants in rivers in Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1ynsr4%3D&md5=1b2f6eb003e3b49e796ee8947ab771c8CAS |

[9]  A. Pistocchi, R. Loos, A map of European emissions and concentrations of PFOS and PFOA. Environ. Sci. Technol. 2009, 43, 9237.
A map of European emissions and concentrations of PFOS and PFOA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOlu7fE&md5=c7756dd22525e7201f82d4056757cfaaCAS |

[10]  M. Murakami, K. Kuroda, N. Sato, T. Fukushi, S. Takizawa, H. Takada, Groundwater pollution by perfluorinated surfactants in Tokyo. Environ. Sci. Technol. 2009, 43, 3480.
Groundwater pollution by perfluorinated surfactants in Tokyo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFertLs%3D&md5=d922b3bdc85bc896b2bbe6b75e466d5aCAS |

[11]  N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, G. Petrick, T. Gamo, A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 2005, 51, 658.
A global survey of perfluorinated acids in oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sjs7vI&md5=f41d0068b593598fe34002e3ebae727fCAS |

[12]  T. Sakurai, S. Serizawa, T. Isobe, J. Kobayashi, K. Kodama, G. Kume, J. H. Lee, H. Maki, Y. Imaizumi, N. Suzuki, T. Horiguchi, M. Morita, H. Shiraishi, Spatial, phase, and temporal distributions of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in Tokyo Bay, Japan. Environ. Sci. Technol. 2010, 44, 4110.
Spatial, phase, and temporal distributions of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in Tokyo Bay, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVWntbs%3D&md5=8b4a8fe2d501ac3b20274193df6e8a52CAS |

[13]  T. Kirchgeorg, I. Weinberg, A. Dreyer, R. Ebinghaus, Perfluorinated compounds in marine surface waters: data from the Baltic Sea and methodological challenges for future studies. Environ. Chem. 2010, 7, 429.
Perfluorinated compounds in marine surface waters: data from the Baltic Sea and methodological challenges for future studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFChs77M&md5=1a93fb743905f37dc21f4974ecbb2eebCAS |

[14]  L. Ahrens, S. Taniyasu, L. W. Y. Yeung, N. Yamashita, P. K. S. Lam, R. Ebinghaus, Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. Chemosphere 2010, 79, 266.
Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVCmtrc%3D&md5=7a5bd6d15ddd9f51d1aa7c64826e6801CAS |

[15]  S. Takagi, F. Adachi, K. Miyano, Y. Koizumi, H. Tanaka, M. Mimura, I. Watanabe, S. Tanabe, K. Kannan, Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere 2008, 72, 1409.
Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGmsL0%3D&md5=8e29b2b02c07bf34d65a1e45c02da500CAS |

[16]  K. Kannan, L. Tao, E. Sinclair, S. D. Pastva, D. J. Jude, J. P. Giesy, Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Arch. Environ. Contam. Toxicol. 2005, 48, 559.
Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVaisrY%3D&md5=ecd3e1f119232a9f9cfe5f2aba150f1fCAS |

[17]  L. Ahrens, N. Marusczak, J. Rubarth, A. Dommergue, R. Nedjai, C. Ferrari, R. Ebinghaus, Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition. Environ. Chem. 2010, 7, 422.
Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFChsrfF&md5=8c51fe1d823ea2cdc7b40316c40d4942CAS |

[18]  K. Kannan, S. Corsolini, J. Falandysz, G. Fillmann, K. S. Kumar, B. G. Loganathan, M. A. Mohd, J. Olivero, N. V. Wouwe, J. H. Yang, K. M. Aldous, Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ. Sci. Technol. 2004, 38, 4489.
Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvV2qsrY%3D&md5=1602d18b34305713bf175b2ead37f2a7CAS |

[19]  K. Harada, A. Koizumi, N. Saito, K. Inoue, T. Yoshinaga, C. Date, S. Fujii, N. Hachiya, I. Hirosawa, S. Koda, Y. Kusaka, K. Murata, K. Omae, S. Shimbo, K. Takenaka, T. Takeshita, H. Todoriki, Y. Wada, T. Watanabe, M. Ikeda, Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan. Chemosphere 2007, 66, 293.
Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqt7rF&md5=95f9752002f017f86dd57ceac577ad08CAS |

[20]  L. B. Biegel, M. E. Hurtt, S. R. Frame, J. C. O'Connor, J. C. Cook, Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol. Sci. 2001, 60, 44.
Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslGktro%3D&md5=bec804c6ae9e0a278a3474a4dd8569a1CAS |

[21]  M. M. MacDonald, A. L. Warne, N. L. Stock, S. A. Mabury, K. R. Solomon, P. K. Sibley, Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid to Chironomus tentans. Environ. Toxicol. Chem. 2004, 23, 2116.
Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid to Chironomus tentans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1GhsLw%3D&md5=c5b1ff3727bd7b0ddd3a96379fa2c6f9CAS |

[22]  B. J. Apelberg, F. R. Witter, J. B. Herbstman, A. M. Calafat, R. U. Halden, L. L. Needham, L. R. Goldman, Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ. Health Perspect. 2007, 115, 1670.
Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ns7zI&md5=86c4ce6a542008c5aa5645950b8af027CAS |

[23]  Y. Zushi, T. Takeda, S. Masunaga, Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan. Chemosphere 2008, 71, 1566.
Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCmtbg%3D&md5=a8f300244698b6c3342e5ff8c5723b41CAS |

[24]  M. Murakami, H. Shinohara, H. Takada, Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 2009, 74, 487.
Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSmsQ%3D%3D&md5=11f36c84b26498cdd012979f76786930CAS |

[25]  A. Y. C. Lin, S. C. Panchangam, C. C. Lo, The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environ. Pollut. 2009, 157, 1365.
The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1ektrs%3D&md5=0bfe64caead2b417529547bf3fd2765bCAS |

[26]  D. A. Ellis, J. W. Martin, A. O. De Silva, S. A. Mabury, M. D. Hurley, M. P. S. Andersen, T. J. Wallington, Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316.
Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVShsb0%3D&md5=1a2a8158f069618f177c7efa759abbccCAS |

[27]  K. Sasaki, K. Harada, N. Saito, T. Tsutsui, S. Nakanishi, H. Tsuzuki, A. Koizumi, Impacts of air-borne perfluorooctane sulfonate on the human body burden and the ecological system. Bull. Environ. Contam. Toxicol. 2003, 71, 408.
Impacts of air-borne perfluorooctane sulfonate on the human body burden and the ecological system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFGmtLk%3D&md5=d576ce92ab8f48e29a261a85e42dbc1eCAS |

[28]  M. Murakami, H. Takada, Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo. Chemosphere 2008, 73, 1172.
Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSgs7fL&md5=aca5f38f20d9277c978a28b02d3a3481CAS |

[29]  M. J. A. Dinglasan-Panlilio, S. A. Mabury, Significant residual fluorinated alcohols present in various fluorinated materials. Environ. Sci. Technol. 2006, 40, 1447.
Significant residual fluorinated alcohols present in various fluorinated materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFGhtA%3D%3D&md5=ee67f970941016f80117418a0f0f64aeCAS |

[30]  S. K. Kim, K. Kannan, Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes. Environ. Sci. Technol. 2007, 41, 8328.
Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gsrbL&md5=731c781add6621ccc7b9d72f4f8c4a32CAS |

[31]  K. Y. Kwok, S. Taniyasu, L. W. Y. Yeung, M. B. Murphy, P. K. S. Lam, Y. Horii, K. Kannan, G. Petrick, R. K. Sinha, N. Yamashita, Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries. Environ. Sci. Technol. 2010, 44, 7043.
Flux of perfluorinated chemicals through wet deposition in Japan, the United States, and several other countries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrtrjJ&md5=19f5cf88d24893adf305961af067f707CAS |

[32]  Y. Zushi, S. Masunaga, First-flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system. Chemosphere 2009, 76, 833.
First-flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12ks7w%3D&md5=6a25b2eca6e422eb3bdc58b58891ba9aCAS |

[33]  J. Yu, J. Y. Hu, S. Tanaka, S. Fujii, Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants. Water Res. 2009, 43, 2399.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1eltbY%3D&md5=aea70e7a805edf616c0f4b2a6f5fe517CAS |

[34]  T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. (Amst.) 2002, 266, 175.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyjur0%3D&md5=1c9316f5cdefc7300309a6e4c150c1c8CAS |

[35]  M. Narumiya, T. Okuda, N. Nakada, N. Yamashita, H. Tanaka, K. Sato, M. Sueoka, T. Oiwa, Occurrence and fate of pharmaceuticals and personal care products during wastewater treatments. Environ. Eng. Res. 2009, 46, 175. [in Japanese].

[36]  A. Musolff, S. Leschik, F. Reinstorf, G. Strauch, M. Schirmer, Micropollutant loads in the urban water cycle. Environ. Sci. Technol. 2010, 44, 4877.
Micropollutant loads in the urban water cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslelsrg%3D&md5=65a6d6be42b03772b566489b417a3bdbCAS |

[37]  N. Nakada, T. Tanishima, H. Shinohara, K. Kiri, H. Takada, Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006, 40, 3297.
Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1OktLo%3D&md5=5c00c339fe7efc01764f464dc49b6779CAS |

[38]  N. Nakada, K. Kiri, H. Shinohara, A. Harada, K. Kuroda, S. Takizawa, H. Takada, Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environ. Sci. Technol. 2008, 42, 6347.
Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFyktrY%3D&md5=04497a51706da629cf47614db5ccc240CAS |

[39]  E. Sinclair, K. Kannan, Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ. Sci. Technol. 2006, 40, 1408.
Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFSruw%3D%3D&md5=e0221a9ac39ad5bf269980597b7befbdCAS |

[40]  C. P. Higgins, R. G. Luthy, Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251.
Sorption of perfluorinated surfactants on sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVChtrjJ&md5=1436f5eabf068622e6df6b5b5f74d81aCAS |

[41]  R. M. Harrison, D. J. T. Smith, L. Luhana, Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 1996, 30, 825.
Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsV2jsg%3D%3D&md5=20ab0090f6f5931d9c116c627db39676CAS |

[42]  R. K. Larsen, J. E. Baker, Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 2003, 37, 1873.
Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1OjsL0%3D&md5=02e18af373dece7d3434dc74682314eaCAS |