Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Biodynamic modelling of the bioaccumulation of arsenic by the polychaete Nereis diversicolor

P. S. Rainbow A B , B. D. Smith A and M. C. Casado-Martinez A
+ Author Affiliations
- Author Affiliations

A Department of Zoology, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.

B Corresponding author. Email: p.rainbow@nhm.ac.uk

We dedicate this paper to the memory of the late Professor Kaise in recognition of his lifelong work on environmental arsenic chemistry.

Environmental Chemistry 8(1) 1-8 https://doi.org/10.1071/EN10089
Submitted: 6 August 2010  Accepted: 20 September 2010   Published: 28 February 2011

Environmental context. Models that explain the uptake and bioaccumulation of an element in an aquatic ecosystem are valuable for predicting its potential ecotoxicity in coastal areas. Arsenic is a toxic element that is strongly adsorbed to sediments, offering a potential risk to deposit-feeding invertebrates, and ultimately to consumers higher up coastal food chains. This study uses biodynamic modelling to predict the uptake and accumulation of arsenic from water and sediment in a deposit-feeding polychaete worm that is a major source of food to fish and wading birds in estuaries.

Abstract. Arsenic (AsV) uptake and bioaccumulation from water and ingested sediment by the deposit-feeding polychaete Nereis diversicolor has been investigated using biodynamic modelling. Worms accumulated As from solution linearly at dissolved concentrations from 2 to 20 µg L–1 (uptake rate constant 0.057 l g–1 day–1 at 10°C, 16-psu salinity), and the As assimilation efficiency from ingested sediment was 28.9%. Efflux rate constants of As taken up from water and ingested sediment were 0.0488 and 0.0464 day–1 and did not differ significantly. Sediment As concentrations, ranging from very high to low, were measured at eight estuarine sites, and the model predicted accumulated As concentrations in resident N. diversicolor. Comparisons of predicted against independently measured As concentrations in locally collected worms showed that the model generally performed well, highlighting the potential of biodynamic modelling in predicting the uptake and therefore ecotoxicity of As in estuarine sediments.

Additional keywords: assimilation efficiency, sediment, uptake rate constant, water.


References

[1]  J. M. Neff, Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917..

[2]  W. J. Langston, Availability of arsenic to estuarine and marine organisms: a field and laboratory evaluation. Mar. Biol. 1984, 80, 143.
Availability of arsenic to estuarine and marine organisms: a field and laboratory evaluation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1Wksrw%3D&md5=0f04d07fa87063fb2591e2733fe054aeCAS |

[3]  W. J. Langston, Assessment of the distribution and availability of arsenic and mercury in estuaries, in Estuarine Management and Quality Assessment (Eds J.G. Wilson, W. Halcrow) 1985, pp. 131–146 (Plenum Press: New York).

[4]  M. C. Casado-Martinez, B. D. Smith, P. S. Rainbow, Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat. Toxicol. 2010, 98, 34.
Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWqt7c%3D&md5=5ff1c7104bbe57d812e761155ce7605dCAS | 20149466PubMed |

[5]  W. J. Langston, Arsenic in UK estuarine sediments and its availability to benthic organisms. J. Mar. Biol. Assoc. U. K. 1980, 60, 869..
Arsenic in UK estuarine sediments and its availability to benthic organisms.Crossref | GoogleScholarGoogle Scholar |

[6]  G. W. Bryan, W. J. Langston, Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ. Pollut. 1992, 76, 89.
Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVSmsbs%3D&md5=eecbbf57a7d4add7b3926f43c4f95d6cCAS | 15091993PubMed |

[7]  S. N. Luoma, C. Johns, N. S. Fisher, N. A. Steinberg, R. S. Oremland, J. Reinfelder, Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ. Sci. Technol. 1992, 26, 485.
Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xnsl2luw%3D%3D&md5=4bd5814f9d272995f32770a34c0fb428CAS |

[8]  W.-X. Wang, N. S. Fisher, S. N. Luoma, Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser. 1996, 140, 91.
Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtlKjt70%3D&md5=95a9faf09741fc0c317ca669a8138981CAS |

[9]  W.-X. Wang, N. S. Fisher, Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ. Toxicol. Chem. 1999, 18, 2034.
Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Sqs7g%3D&md5=8662a0424d717169b67d43e0c0844111CAS |

[10]  S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005, 39, 1921.
Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLY%3D&md5=5c810653f6f35c70b4f2d49e47cef6afCAS | 15871220PubMed |

[11]  W.-X. Wang, I. Stupakoff, C. Gagnon, N. S. Fisher, Bioavailability of inorganic and methylmercury to a marine deposit-feeding polychaete. Environ. Sci. Technol. 1998, 32, 2564.
Bioavailability of inorganic and methylmercury to a marine deposit-feeding polychaete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGltbw%3D&md5=28fb3104ebba0bed34e563c558c1eba0CAS |

[12]  W.-X. Wang, I. Stupakoff, N. S. Fisher, Bioavailability of dissolved and sediment-bound metals to a marine deposit-feeding polychate. Mar. Ecol. Prog. Ser. 1999, 178, 281.
Bioavailability of dissolved and sediment-bound metals to a marine deposit-feeding polychate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht12gsA%3D%3D&md5=a51cc0ad91cd1dd41489e3328054e7fdCAS |

[13]  M. C. Casado-Martinez, B. D. Smith, T. A. DelValls, P. S. Rainbow, Pathways of trace metal uptake in the lugworm Arenicola marina. Aquat. Toxicol. 2009, 92, 9.
Pathways of trace metal uptake in the lugworm Arenicola marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFOjtbY%3D&md5=442733f3d36d1443ba408c308169edf5CAS | 19181398PubMed |

[14]  M. C. Casado-Martinez, B. D. Smith, T. A. DelValls, S. N. Luoma, P. S. Rainbow, Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Environ. Pollut. 2009, 157, 2743.
Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1CjsbY%3D&md5=ddf8abb92da5d3ba31a4de3a848b4f6cCAS | 19482397PubMed |

[15]  P. S. Rainbow, B. D. Smith, S. N. Luoma, Differences in trace metal bioaccumulation kinetics among populations of the polychaete Nereis diversicolor from metal-contaminated estuaries. Mar. Ecol. Prog. Ser. 2009, 376, 173.
Differences in trace metal bioaccumulation kinetics among populations of the polychaete Nereis diversicolor from metal-contaminated estuaries.Crossref | GoogleScholarGoogle Scholar |

[16]  P. S. Rainbow, B. D. Smith, S. N. Luoma, Biodynamic modelling and the prediction of Ag, Cd and Zn accumulation from solution and sediment by the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 2009, 390, 145.
Biodynamic modelling and the prediction of Ag, Cd and Zn accumulation from solution and sediment by the polychaete Nereis diversicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2ksLbF&md5=67d0086405fa1ac48895e880e44b1572CAS |

[17]  S. B. Griscom, N. S. Fisher, S. N. Luoma, Geochemical influence on assimilation of sediment-bound metals in clams and mussels. Environ. Sci. Technol. 2000, 34, 91.
Geochemical influence on assimilation of sediment-bound metals in clams and mussels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOms7g%3D&md5=3a916768d0adae16899324ddd2a9d638CAS |

[18]  S. B. Griscom, N. S. Fisher, S. N. Luoma, Kinetic modeling of Ag, Cd and Co bioaccumulation in the clam Macoma balthica: quantifying dietary and dissolved sources. Mar. Ecol. Prog. Ser. 2002, 240, 127.
Kinetic modeling of Ag, Cd and Co bioaccumulation in the clam Macoma balthica: quantifying dietary and dissolved sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVCqtL8%3D&md5=0f1c92123f4fae282d7daa7b8a74f855CAS |

[19]  C. K. King, S. L. Simpson, S. V. Smith, J. L. Stauber, G. E. Batley, Short-term accumulation of Cd and Cu from water, sediment and algae by the amphipod Melita plumulosa and the bivalve Tellina deltoidalis. Mar. Ecol. Prog. Ser. 2005, 287, 177.
Short-term accumulation of Cd and Cu from water, sediment and algae by the amphipod Melita plumulosa and the bivalve Tellina deltoidalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFyrs7c%3D&md5=b0960e4bcc6ac8b8fd08f1bca200e854CAS |

[20]  S. L. Simpson, C. K. King, Exposure-pathway models explain causality in whole-sediment toxicity tests. Environ. Sci. Technol. 2005, 39, 837.
Exposure-pathway models explain causality in whole-sediment toxicity tests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyhsrnE&md5=59a467996be8a435570a020bc3f6a3b4CAS | 15757347PubMed |

[21]  P. S. Rainbow, A. Geffard, A. Y. Jeantet, B. D. Smith, J. C. Amiard, C. Amiard-Triquet, Enhanced food chain transfer of copper from a diet of copper-tolerant estuarine worms. Mar. Ecol. Prog. Ser. 2004, 271, 183.
Enhanced food chain transfer of copper from a diet of copper-tolerant estuarine worms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Cgtrg%3D&md5=ca26db1646b5846d71ad5bc32cee4cebCAS |

[22]  P. S. Rainbow, L. Poirier, B. D. Smith, K. V. Brix, S. N. Luoma, Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete Nereis virens and the decapod crustacean Palaemonetes varians. Mar. Ecol. Prog. Ser. 2006, 321, 167.
Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete Nereis virens and the decapod crustacean Palaemonetes varians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSksLvO&md5=e513cf1eeb17bc1fa4dc16b4feede934CAS |

[23]  G. W. Bryan, W. J. Langston, L. G. Hummerstone, The use of biological indicators of heavy metal contamination in estuaries. Occ. Publ. Mar. Biol. Assoc. U.K. 1980, 1, 1..

[24]  G. W. Bryan, W. J. Langston, L. G. Hummerstone, G. R. Burt, A guide to the assessment of heavy-metal contamination in estuaries. Occ. Publ. Mar. Biol. Assoc. U.K. 1985, 4, 1..

[25]  G. W. Bryan, P. E. Gibbs, Heavy metals in the Fal Estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Occ. Publ. Mar. Biol. Assoc. U.K. 1983, 2, 1..

[26]  G. E. Millward, H. J. Kitts, L. Ebdon, J. I. Allen, A. W. Morris, Arsenic species in the Humber Plume, UK. Cont. Shelf Res. 1997, 17, 435.
Arsenic species in the Humber Plume, UK.Crossref | GoogleScholarGoogle Scholar |

[27]  M. B. Harley, Occurrence of a filter feeding mechanism in the polychaete Nereis diversicolor. Nature 1950, 165, 734.
Occurrence of a filter feeding mechanism in the polychaete Nereis diversicolor.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3c%2Fis1Cmtg%3D%3D&md5=4351f34798ec871873f3a07cc6bb8b9eCAS |

[28]  W. G. Wallace, G. R. Lopez, J. S. Levington, Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar. Ecol. Prog. Ser. 1998, 172, 225.
Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVakurk%3D&md5=46c29c8e46f5ba32e84de1bc98a19b7dCAS |

[29]  L. M. Cammen, Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 1979, 44, 303.
Ingestion rate: an empirical model for aquatic deposit feeders and detritivores.Crossref | GoogleScholarGoogle Scholar |

[30]  G. T. Banta, M. Holmer, M. H. Jensen, E. Kristensen, Effects of two polychaete worms (Nereis diversicolor and Arenicola marina) on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat. Microb. Ecol. 1999, 19, 189.
Effects of two polychaete worms (Nereis diversicolor and Arenicola marina) on aerobic and anaerobic decomposition in a sandy marine sediment.Crossref | GoogleScholarGoogle Scholar |

[31]  E. Kristensen, Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biochemistry in coastal marine sediments. Geochem. Trans. 2001, 2, 92.
Impact of polychaetes (Nereis spp. and Arenicola marina) on carbon biochemistry in coastal marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zks1KltA%3D%3D&md5=824ea78c99bab1643170fc6a1ecbdf99CAS | 16759424PubMed |

[32]  S. N. Luoma, P. S. Rainbow, Metal contamination in aquatic environments: science and lateral management 2008 (Cambridge University Press: Cambridge, UK).

[33]  J. Kalman, B. D. Smith, I. Riba, J. Blasco, P. S. Rainbow, Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model. Mar. Environ. Res. 2010, 69, 363.
Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaqur4%3D&md5=b698b3718f219e822c5b3f3f61afdd15CAS | 20137808PubMed |

[34]  P. S. Rainbow, S. N. Luoma, Biodynamic parameters of the accumulation of toxic metals, detoxification and the acquisition of metal tolerance, in Tolerance to Environmental Contaminants (Eds C. Amiard-Triquet, P. S. Rainbow, M. Roméo), in press, pp. 127–151 (Taylor and Francis Books: Boca Raton, FL, USA).

[35]  C. Mouneyrac, O. Mastain, J. C. Amiard, C. Amiard-Triquet, P. Beaunier, A.-Y. Jeantet, B. D. Smith, P. S. Rainbow, Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment. Mar. Biol. 2003, 143, 731.
Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslartL4%3D&md5=630aa41e640e86bb90b22391097c8ea7CAS |

[36]  C. Michel, E. J. DeVillez, Digestion, in Physiology of Annelids (Ed. P. J. Mill) 1978, pp. 509–554 (Academic Press: London).

[37]  K. S. Richards, Epidermis and cuticle, in Physiology of Annelids (Ed. P. J. Mill) 1978, pp. 33–61 (Academic Press: London).

[38]  A. Geffard, B. D. Smith, C. Amiard-Triquet, A.-Y. Jeantet, P. S. Rainbow, Kinetics of trace metal accumulation and excretion in the polychaete Nereis diversicolor. Mar. Biol. 2005, 147, 1291.
Kinetics of trace metal accumulation and excretion in the polychaete Nereis diversicolor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKksLjP&md5=4dea0a0187a425a2724e90e654eb1422CAS |