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ABSTRACT

In this paper, electrical potential due to a point source in an
arbitrarily anisotropic medium is obtained by means of
converting the relevant matrix equation into a Poisson’s equa-
tion through an orthogonal coordinate transformation and a
stretching transformation. In a geophysical exploration,
depending upon the depth of a mineral deposit (target) from
the plane of electrical potential measurements, the effects of
electrical anisotropy may result in missing a target.

INTRODUCTION

A material is electrically anisotropic if its electrical
characteristics are direction dependent. Different mecha-
nisms producing preferred alignments of crystals or minerals
in the rocks, and differentially aligned cracks (or pores under
pressure) may give rise to anisotropy in the properties of the
materials. As these mechanisms were invariably present in
the formation of the earth’s crust, anisotropy in lithospheric
materials is a widespread phenomenon. Electrical and
electromagnetic field measurements by geophysical methods
are considerably influenced by the anisotropy in the electrical
properties of the layers in the crust. In isotropic materials, the
electric field £, and the tota! volume density of electric current
J, {i=1,2,3} are in the same direction and their relationship is
expressed by

J,' = G'E,', (1)

where o the conductivity of the medium, is a scalar quantity.
This relation shows that by measuring the electric field the
effect of the medium on the measurements can be easily
recognised. In an anisotropic medium, directional dependent
field quantities are related through the following constitutive
relation:

J O11 01,2 013 E
Jz = 021 022 023 E, 3 (2)
Ja 31 032 033 Es

where the numbers 1, 2 and 3 denote the three fixed
orthogonal directions of a Cartesian coordinate system. Here
{0,1,0,.-.-055,3are the elements of the conductivity tensor
which is symmetric and positive definite. From equation (2) it
is seen that electric field measurements depend on the

direction of measurements in an electrically anisotropic
material. If we ignore anisotropic effect of the material and
interpret the geophysical measurements with the assump-
tions that the layers in the subsurface are isotropic, our
interpretations could go wrong (missing subsurface targets in
drilling). For better understanding of the field measurements,
effects of anisotropy should be considered in the inter-
pretation of the field data.

To study the anisotropic effects, a higher order symmetry in
the conductivity tensor has been considered by several
workers by assuming that the medium is transversely iso-
tropic, i.e., the principal axes of anisotropy are parallel to and
perpendicular to the earth’s surface (Bhattacharya and Patra,
1968; Asten, 1974; Srinivas and Upadhayaya, 1974,
Bhattacharya and Sen, 1981; Eloranta, 1988; Negi and Saraf,
1989). Recently, considering azimuthal anisotropy, direct
current electrical potentials of an anisotropic half-space have
been computed by Lindell et al. (1993). Computation of elec-
trical potential in a medium in which only the diagonal
elements of the conductivity tensor exist, is given in Parasnis
(1986, Appendix 10, p.374). Although these are useful con-
siderations in studying anisotropy effects in electrical
measurements, they are too restrictive for many materials in
the crust of the earth. For example, the surface layers in
tropical and subtropical countries are deeply weathered and
display a more complicated anisotropy because of developing
cracks. Such cases may be common in countries like
Australia where the mineral deposits lie under a weathered
conductive surface layer. It is important to consider the pres-
ence of strongly arbitrarily anisotropic media and their
influences in the interpretation of electrical and electromag-
netic measurements by geophysical methods. In this note an
analytical solution is presented for studying the effect of
arbitrarily (oblique) anisotropic conducting material in elec-
trical potential measurements as a result of direct current
distribution in the medium.

MATHEMATICAL FORMULATION

Let us consider a homogeneous, arbitrarily anisotropic,
medium into which a point source injects an amount of
electric current /. To specify position in the anisotropic
medium, the coordinates {x;, x,, X,} with respect to a fixed,
orthogonal, Cartesian reference frame with the origin O and
the three mutually perpendicular base vectors {i,,i,i;} of unit
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length each, will be considered; i, points vertically downward.
The subscript notation for vectors and tensors is used and the
summation convention applies. Lowercase Latin subscripts
are to be assigned the values 1, 2, 3, while a Greek subscript
is to be assigned the values 1, 2. Partial differentiation is
denoted by d; d, denotes differentiation with respect to x,,

For the static electric current flow, the field quantities are
governed by the following equations:

2. V(z) = -E.(z), 3)
atk‘]-‘fk(:c) = 1(5(1:—:!:’), (4)

where, V is the electric potential, x and x° denote the
coordinates of the field point and the point source and
6(x—x°) is Kronecker symbol, §(x—x*)=1 for (x=x°). Now, we
write the constitutive relation, equation (2), in tensorial
notation as

Ji = o4 E,, (5)
which can also be written as

E, = (i (6)
with the relationship,

G = (07 iy (7

Here, { .is the resistivity tensor which is the inverse of the
conductivity tensor o, , and both of them are symmetric and
positive definite. From equations (3), (4), and (5), we write

Okyr0:, 05,V = —I6(z — 7). (8)

Here onwards, we drop the spatial argument of V. Equation
(8) is, in fact, Poisson’s equation for the medium under con-
sideration. Using the following orthogonal coordinate trans-
formation

Yn = Bum(Em — 27,) (9)

the left-hand side operation on V of equation (8) is changed
as in the following:

ks 00,0z, = 7M6,,,0,,8,,, (10)
where,

BrkkrBor =78, ,. (1)
Equation (11) reduces to

prBor = 7 Bap: (12)

This relation defines an eigenvalue problem for the matrix O,
with eigenvalues y*;s=1,2,3 and the corresponding eigen-
column vector {f;,;5=1,2,3} In view of the positive defin-
iteness of o, all ¥ are real and positive. Further, since

(B..) is orthogonal, we have det(8, .)=1 and hence

§(y) = é(= - =). (13)
Collecting the results, we arrive at
v%8,,8,.V = —Is(y). (14)

Next, we apply the stretching transformation

1

ey = 2, 15
myk Zk ( )
which yields
o 0
(k) = i 1
7 a?/k a!/k az" 6;,‘ ’ ( 6)
and
L (17)

Iy) = ——=4(2).
(y) ‘/7(1)7(3)7(3) ( )
Equations (14), (16), and (17) yield
I

L __5(2). 18
NARNENE () (18)

Now, equations (18) is nothing but Poisson’s equation for a

8,0,V =

point source with strength \/T%I/(——W’ the solution of which is

y=—L 1 (19)

/D@ 47|z]’

From equations (9) and (15)

2] = [Bri(v®) " Br (i — 23)(a; — 22)]5. (20)

Using equations (7), (12), and (20)

2| = [(z: = 28)Gi(; — 27 (21)

Further, ¥*¥;s being the eigenvalues of o, (inverse of the
matrix £, ), we have

1

T = el "

Finally, from equations (19), (21), and (22)

oL (et s (23)

Am [(z; — 28)¢(z; — 23))7

Form equations (23) we
observe that

(zi — 2})G,;(z; — x5) = constant, (24)

which means that the surfaces of constant potentials are the
ellipsoids as x.{,,x, is constant. These ellipsoids will be
centred at x;=x,,. Their axial directions are the eigenvectors
of ¢, .- If we cut the set of equipotential surfaces by a plane,
concentric ellipses of equipotential curves will lie on the
plane.
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Fig. 1. Equipotential contours of electrical potentials on a horizontal
plane in the arbitrarily anisotropic medium; the depths of the point
source are 0.5, 10 and 20 m, vertically below the centre of the horizontal
plane.

NUMERICAL COMPUTATIONS

We consider an arbitrarily anisotropic medium which has the
following electrical conductivity parameters:

0.1  0.005 0.1
[o]=| 0.005 0.08 0.01 |S/m. (25)
0.1 001 05

Let an electric point source inject direct current in this
obliquely anisotropic medium. In Figure 1, the equipotential
contours on the horizontal planes at different vertical sepa-
rations, i.e., 0.5 m, 10 m, and 30 m from the point source are
presented. The point source is located vertically below the
crossing of the two broken lines on each horizontal plane of
measurements. It is observed that with the increasing vertical
separation between the point source and the plane of
measurements, the centre of the concentric equipotential
contours moves horizontally away from the source. The axes
of anisotropy remain unaltered.

CONCLUSION

An analytical solution for studying the effects of arbitrarily
(oblique) anisotropic medium on electrical potential measure-
ments as a result of a direct current distribution in the medium
has been presented. If a mineral deposit is buried in or under
an anisotropic layer, the success of locating the deposit
(target) below the maximum (or minimum) on a profile on the
plane of measurements (usually the earth’s surface) would
depend on the vertical depth between the target and the
surface of measurements. This conclusion is based on the
fact that electric point charges are developed on the surface
of a target because of the conductivity contrast of the target
and the host medium; depending on the depth of the charge
distribution (the target), the centre of the elliptical confocal
contours would move horizontally away from the target.
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