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Abstract

We formulate the problem of a transient magnetic dipole
located over a thin conductive sheet which may exhibit
frequency dispersion or L.P. (induced polarization). A first order
analysis is carried through for the case when the source
current is a step function. It is shown that the |.P. slow tail
can be of opposite polarity to the principal electromagnetic
response.

Introduction

In geophysical exploration and non-destructive testing, the
thin sheet conductor is a useful idealization of the target. In
such cases, the conductivity-thickness product, od, or
conductance is a key parameter. When the sheet, located in
free space, is excited by an external pulsed magnetic dipole,
it has been shown that the image of the source is a like dipole
but its distance from the sheet recedes in time (Wait, 1956).
Such a concept was originally put forth by Maxwell (1891) a
century ago. The normalized time parameter, for such a
problem, is t/(u,odl) where p, = 4z x 1077 is the
permeability of the surrounding free space, and | is some
scale length such as the distance of the source to the sheet.

An interesting extension of the thin sheet induction problem
is to allow the conductivity of the sheet to be a function of
frequency which we designate as ofjw) for a time factor
exp(jwt). We then enquire if the image concept is still
applicable. And, if so, what modifications of the time domain
formulation are needed? For purposes of illustration, we
choose a simple Debye type model for the frequency
dispersion of the sheet conductivity. A closely related problem
was discussed recently in this journal by Smith and West
(1988). We wish to complement their development with an
approximate analysis; and it is hoped that the new insight
provided is not entirely trivial.

Basic Transform Representation

The formal solution of the guasi-static time harmonic problem
is well known (e.g. Wait 1951, Grant and West 1965) so we
may summarize the solution very briefly here. To cast the
needed resuit into Laplace transform notation, we merely
replace jw by s, the transform variable. Also, we define a
normalized sheet admittance y(s) by the relation

y(s) = d(s)dp, /2 (1)

The conductive sheet, itself, is to be located in the plane z
= 0 of a cylindrical coordinate system (r, ¢, z). The source,
located at z = h, is a small loop of area dA carrying a current

I(t) which is zero for t < 0. The corresponding transform is
obtained from

o)
I(s) = S ity e Stdt = LI(s) (2)
e}

where L is the Laplace transform operator.

Now, within our quasi-static assumption, the magnetic field
outside the sheet can be obtained from a time-varying
magnetic potential U(t) according to

A(t) = - gradu(t) (3)
where
uit) = L= ucs) (4)

where L-1 is the inverse Laplace transform operator. For z
> 0, we may write

@
_ I(s)dA @ 1_ ?
u(s) = - 7T [aZ R -y og
s f(s) e (2 M 5 (kr) dk ]
(5)
where
f(s) = [s + (k/y(s)) 17" (6)
and
R o= (24 (2-m27} n

Explicit Inversion of Transform

To specialize further, we will now adopt a turn-on or step
function current excitation. Thus

I(t) = I_u(t) (8)
where u(t) = Ofort < 0 and u{t) = 1 fort > 0. Then we
deduce that the time dependent potential is
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(9)
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Now we restrict attention to weakly dispersive conductivity
such that the fractional change of o(jw), over all significant
frequencies, is small compared with one. Thus we may write

flk,s) ¥ f (k,s) « Lyls) -y 1 f r(k,s) (10)

Here y_ = '™ . y(s) is the high frequency limit of the

normalized admittance. Furthermore, in our example,

fotkis) = 1/[s + (k/y)] (11)
and
2 flk,s) 3 fptkys)
fm'(k,S) = dy(s) y(s) » Yo - Bym

(12)

Thus, it follows that
fm-(k,s) = (k/yé) (s + (k/ym)]—z (13)

Equation (9) can now be decomposed as follows

uety = oMy s P (14)
The first part is
vty - - IaonA (& (= - —ey)] ult)
(15)
where
Q
/R (t) = DS L ogs s (k/ym]'1e'k(z*h)30(kr) dk

(16)

@
i g e_(k/ym)te-k(z+h)30(kr)dk u(t)
o (17)

2

= WLt s (z+hs (t/ym))zli u(t) (18)

Carrying out the differentiation, we obtain

UEMe) = 1% [z unysr(e? . (2o ny2)372 (19)

47T

- (z+h « t/ym)/[rz s (rZ4 (zebs t/ym)2 1?72 ]
Clearly UBM(1) is the electromagnetic response computed as
if the conductivity of the sheet was o(d o) or o_ for all
frequencies. Then we see that R’’(t) is the time dependent
distance from the image at z = —(h + t/y_) to the observer
at (r, z). Of course, the contribution from the image vanishes
as t becomes sufficiently large.

Now the second part of (14) is given by

dA @

1
ulPeey = - f“ T y(s) - ycn]%

o]
___—k____]z e—k(z+h) Jo(kr)dk
(20)
We identify this as the I.P. response although it also has an

electromagnetic contribution if no further approximations are
made.

The Debye Dispersion Model

To proceed further, we need to specify a dispersion model.
We adopt the simple Debye form corresponding to a single
relaxation time g. Thus

g(jw) - 6(jw) = -m6(jow)/ (1 + jwg]
(21)

or equivalently

y(s) - vy = -mym/[1+sg] (22)

Here the dimensionless factor m can be called the
chargeability. In essence we have already assumed m is small
compared with one being the case for weak polarization.

The relevant transform in (20) to be inverted is now dealt with
as follows:

L Ny(s) -y YK/ Dsy v K 1P
= _[me/( y g)]L_1[(s + 1/g)(s + k/y )]'1 (23)
® ®
= - (mk2/gym)
-t/g (17t - k/y Ot - 11e g
Le - iad (24)
[ 1/q - k/ym]
¥ - (my /79) exp(-t/qg) (25)

where the latter approximate form (25) is valid if g > > y_
/k for all significant values of k. Here g can be dubbed the
I.P. time constant while y _ is the E.M. time constant bearing
in mind that 1/k is a characteristic scale length. Then, using
(20) we see that

Ulp(t) ~ Io dA

(m Yo' O X1/ R)exp(-t/g) ul(t)(26)
4T

where we have used the indentity
m
R = S e (2 ¢ My (kr) ok (27)
s}

where R is given by (7) being the distance from the
geometrical image point, at z = —h, to the observer at (r, z).

Concluding Remarks

It is remarkable that the I.P. slow tail, characterized by the
time constant g, appears to be equivalent to a time varying
magnetic pole at the image point z = —h but it decays with
time exponentially. Also it is proportional to the conductivity
of the sheet and varies inversely with the I.P. time constant.
An alternative interpretation of the 1/R dependence for the
potential is to view the pole contribution as a semi-infinite
magnetic current extending downwards fromz = —hto — .
But, of course, we should bear in mind that that we have made
a number of physical approximations to simplify the analysis.
Essentially we have assumed that the dispersion or
polarizably is weak (e.g. m < 0.2) and that the I.P. time
constant is somewhat greater than the E.M. time constant.
It would not be difficult to relax such assumptions, as Smith
and West (1988) have done in a closely related problem, but
then numerical effort is required and some insight is lost.
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