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Abstract

The standard approach to stacking and velocity estimation
for 3-D seismic reflection surveys is to organise the data by
CMP bins and then apply techniques originally developed for
2-D surveys. The benefit of conventional binning is primarily
in the display of the 3-D data volume.

Velocity estimation can be carried out directly with 3-D data
provided the geometry of the survey is readily available. To
minimise the effects of dip it is still desirable to restrict the
location of the CMP’s to lie in a restricted region without the
requirement of bins of fixed size. Since the stacking velocities
are azimuthally dependent, the trace gathers for velocity
estimation over a narrow azimuth window should be chosen
for that purpose rather than be based on stacking bins. Once
the elliptic variation of stacking velocity with azimuth has been
estimated, the seismic traces can be simultaneously stacked
and interpolated onto a regular grid. The interpolation
procedure is of most significance for short reflection times.
The regular array of traces is particularly beneficial for the
development of 3-D self-consistent statics procedures
exploiting recent developments in large scale inverse
problems.
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Introduction

The majority of processing schemes for 3-D seismic data have
evolved directly from their 2-D counterparts. Indeed in many
cases the handling of 3-D data is so arranged that 2-D
techniques, which are oriented to information along a line,
are applied directly. However, for 3-D land surveys at least,
the data collection procedure is not equivalent to a set of 2-D
swaths. The data processing techniques employed should
therefore be developed to take full account of the
characteristics of 3-D survey geometries.

In particular, much 3-D processing involves combining traces
for which the midpoint between source and receiver lie in a
designated zone (a ‘bin’). The purpose of this procedure is
to produce regularly spaced data in the horizontal directions
which are suitable for display or for the application of 2-D
processing techniques. The traces within a bin are frequently
stacked on the assumption that all traces effectively lie at the
centre of the bin, and velocity analysis is conducted based
on the same binning pattern.

Stacking with azimuth dependent velocities

In the presence of dip, lateral velocity variations or anisotropy,

the appropriate stacking velocity for 3-D data requires
azimuthal dependence. To a good approximation, this
azimuthal variation is elliptical (Lehmann and Houba 1985)
s0 that the stacking velocity along azimuth can be represented
as

(1) vg(6) = Vil - e* cos(6-6,)",

where e is the eccentricity of the ellipse and ¢0 is the azimuth
of its major axis (Figure 1). For a single dipping plane with
a uniform, isotropic, overburden v is the medium velocity, 6,
is the dip direction and e = sin ¢, where ¢ is the dip angle
(Levin, 1971). However, in general with multilayering or curved
interfaces, there is no simple relations between e, 6, and
geologic parameters. Nevertheless, we have to take account
of the azimuthal variation of the optimum stacking velocity
when constructing stacked sections. In order to estimate this
angular dependence, any stacking velocity estimate must be
generated from a relatively narrow range of shot-receiver
azimuths. With an even coverage of an azimuth window, a
span of more than 60° can give errors in the stacking velocity
estimates for the centre of the window of 5 per cent or more,
which tend to be enhanced by an uneven distribution of
azimuths (Figure 1). Practically, 60° should be regarded as
the largest azimuth window which is likely to give useful
stacking velocity estimates.

The affect of a range of azimuths is akin to the presence of
a further class of offset-dependent static errors; the time shifts
are larger for traces with larger offset. Monte-Carlo simulations
including statics errors and varying noise levels have shown

FIGURE 1

Variation of stacking parameter (1/vgy) with azimuth. The solid
curve represents the variation from equation (1) with eccentricity
ez = 0.2. The dashed curve shows the resuit of averaging the
stacking parameter over a 40° window about the selected
azimuth. The grey curve simulates the effect of uneven goverage
in an azimuth window by combining 10 randomly chosen
directions within a 40° azimuth window and allowing 1 percent
error in each estimation. Note that the error is largest near 45°
where uniform coverage gives the best fit to the true curve.
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FIGURE 2

Selection of traces for a narrow azimuth window on a swath
shooting geometry. The illustrated paths fall within a 30° azimuth
window and their midpoints within a receiver spacing of the target
point (shown as a solid symbol). The fold of coverage for velocity
analysis can be markedly improved by using a velocity bin
extended parallel to the receiver lines.

that an azimuth window 40° wide can give good estimates
of the stacking velocity for the centre of the window. Even so
there will be a tendency to overestimate the smallest stacking
velocity and to underestimate the largest stacking velocity.
In order to get a reliable estimate of the three parameters
v,e,60 appearing in (1) via least squares fitting we need at least
5 independent estimates of stacking velocities in narrow
azimuthal windows.

In order to get sufficient fold of coverage for azimuthally
varying estimates of stacking velocity centred on a particular
point we must separate the concept of bins for velocity
estimation and stacking. We have to assume that the stacking
velocity ellipse varies only slowly on the scale of a few stacking
bins. The optimum choice of ‘velocity bin’ for a particular
survey will depend on the geometry. If, for example, the shots
are deployed perpendicular to lines of receivers an effective
way of increasing fold of coverage is to extend the bin oblique
to the target azimuth as shown in Figure 2. To reduce
systematic time errors from traces with CMP’s well displaced
from the intended point it can be advantageous to apply
spatial weighting across the bin. When a number of azimuth
windows are used, the resulting azimuth dependence will be
derived for the region which is the intersection of all the
velocity bins.

Once we have determined the angular variation of the stacking
velocity with reflection time, we can combine the traces within
a stacking bin by simultaneous stack and interpolation to the
grid location required for the bin trace. The use of azimuthally
dependent velocities in stacking will help to preserve the high
frequencies and this can be enhanced by correcting all the
traces to the same location. If the displacement of the CMP
from the required grid point for the bin Ar (Figure 3) is smail
compared with the source-receiver offset, the interpolation
procedure can be achieved during normal moveout correction
by a small correction to the NMO time

2) A tnyMO = -4 (AN2v2(6) tnmo

for source-receiver azimuth 6. This correction decreases with
increasing tNMO and is in general quite small, but can be
significant for high resolution surveys. in general the time
correction for midpoint location will prove sufficiently accurate

for arrivals left after mute. This procedure of relocating the
stack traces will give a regularly spaced grid of traces for
subsequent analysis.

The trace interpolation cannot accommodate large
displacements from the grid location for the bin, but does allow
some flexibility in choice of traces and thus the shape of the
bin which is used to generate the composite trace. The centre
of the bin should not depart very far from the grid point.

3-D statics corrections

Even when the main object of 3-D processing is a migrated
data volume, the construction of an optimally stacked section
has an important role in the estimation of static corrections.
Field statics derived from uphole data or refraction surveys
are valuable but rarely take full account of the complexity of
the near surface region. In order to improve the statics
corrections a further set of assumptions has to be made. A
common choice is the surface consistent residual statics
model of Taner et al (1974) which assumes that the corrections
are time shifts which depend only on source and receiver
position and not on the propagation path through the Earth.
Although somewhat simpilified, this model works well in
practice: for the h th reflection horizon, the time correction
for the jth shot recorded at the ith receiver can be
approximated as

3) tijh =S§j + 1 + Ggp + Mkhxij2

where s; is the source static, r; the receiver static, G, is the
time correction for the trace at the gridpoint k corresponding
to the CMP, and My, xji2 is a residual moveout term to correct
for velocity errors (x;; is the offset term for the source and
receiver via the grid point). The time corrections thus depend
on 4 different sets of parameters with distinct physical
character.

Once estimates of the t;, have been generated we wish to
extract the statics field and the horizon corrections. Under
the assumption that the errors in the tjj, have a Gaussian
distribution we can attempt to minimise
obs
4) s = L (tjn - tjn)? + Reg,
ijh

with respect to the required parameters S, r; etc. To remove
ill-conditioning we have imposed a regularisation term e.g.

R

FIGURE 3
Mapping of the midpoint M between source and receiver onto
a fixed grid point B within a bin by displacement through Ar.
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that the horizon corrections be smooth. The set of linear
equations resulting from this minimisation have been solved
by Wiggins et al (1976) using a Gauss-Siedel method. For a
full 3-D survey the number of equations is too large for direct
attack. The conventional approach is to adopt line oriented
2-D schemes and then to patch together cross-line
consistency. A better approach is to treat the problem using
recently developed techniques in inverse problems. A suitable
candidate is the subspace approach of Kennett et al (1988)
which is designed to deal with parameters of different physical
types and dimensions. This approach is iterative and the
central computation requires the solution of a small matrix
(no larger than 40x40) at each step. Convergence is rapid and
the method is easily adapted to other measures of data fit
than (4).
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