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Summary

Because of the complicated nature of earthquake induced
ground motions and the corresponding transient response of
structures to such motions, the use of response spectrum has
achieved wide acceptance, in the field of earthquake
engineering, as a meaningful measure of the intensity of an
earthquake. Thus, it is useful to investigate the application
of the digital computer to characterise real earthquake motion
(in the form of digitised acceleration time histories) by means
of response spectra. The conceptual development of the
response spectrum (which should not be confused with the
ground motion spectrum) and its application to the analysis
of transient oscillations in elastic systems is attributed to
Benioff (1934), Neuman (1936), and Biot (1943). Its engineering
significance lies in the fact that once the spectrum is known
for a one-degree-of-freedom system, it is possible to compute
the value of the maximum shear produced by an earthquake.
Further, extension of this concept of response spectra to
multidegree of freedom systems can be done using the modal
superposition method of dynamic analysis. The mathematical
formulation for performing response analyses of a single-
degree-of-freedom system is explained.

Single-degree-of-freedom damped system subjected to an
arbitrary ground motion

Consider a mass m (which is assumed to be infinitely rigid)
connected to the ground by weightless springs, such that it
can oscillate (Fig. 1). Further, it possesses a spring constant
k, and for the sake of analytical convenience is subject to
viscous damping expressed by the constant c. In Fig. 1 it will
be observed that damping is represented graphically as a
dashpot. In such a viscous damping model, the damping force
is proportional to the mass, while the elastic resistance force
is proportional to the displacement of the mass m.

The equation of motion of such a system subjected to an
arbitrary ground motion X" 4(t) is:
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FIGURE 1
Arbitrary ground motion.

This is a second order linear differential equation with constant
coefficients. Substituting x”(t) = X"g(t) + x"(t) in equation
(1), the equation of motion becomes:

m x" () + ¢ x'() + kx(t) = -m x”g(t) (2)

where m = mass of structure
k = stiffness of structure
A\ = damping ratio
w = natural circular frequency
¢ = viscous damping coefficient
W = weight of structure
g = acceleration due to gravity
X(t), x'(t), and x”(t) = Displacement, velocity and
acceleration respectively of the
structure relative to the ground.
= Displacement and acceleration
of ground motion.

Xg(t), and x” 4(t)

As the following relationships exist between the coefficients
in equation (1)

C = 2m\w = 2m\(km)"2
Equation (2) can be written in the form:

m x" () + 2 xmwx’(t) + k x() = -m x”g(t) (3)
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The solution of equation (3) at rest conditions (x, = x/=0) is:

x(t) =__=1 st X" (e DsinfwV(1-N)(t-7)ld7  (4)
oV(1-\?) °

where d7 = Integration interval at time 7. When the difference
between the damped and undamped frequencies is
neglected, as is permissible for the small damping ratios found
in practical structures (A <20 per cent), this can be reduced to:

x(t) = _ f x”g(r)e—)“"(t_")Sin[w(t—T)]d‘r (5)

5.5
w
It should be noted that the negative sign in equation (5) can
be ignored as it has no real significance in an earthquake

excitation. The maximum absolute value of the integral term
in equation (5) is called the spectral velocity, S,.

g (J)‘txug(.,)e_kw(i-f)sin[w(t—r)]drlmax (6)

The spectral velocity, S,, is the maximum velocity
experienced by a single-degree-of-freedom system when
subjected to a given ground motion acceleration time history,
X g(t). The maximum response velocities, S,, can be deter-
mined for a series of single-degree-of-freedom systems with
different natural periods, T, and different damping ratios, \.
A plot of the response velocities against the periods, and
damping ratios, of the single-degree-of-freedom systems is
termed the response velocity spectrum, or simply the velocity
spectrum.

In structural analysis, however, it is most convenient to work
in terms of response acceleration rather than in response
velocity. In this case, the maximum response acceleration,
S, of a single-degree-of-freedom system subjected to a
given ground motion acceleration time history, x”(t), for
small damping ratios, A\, can be determined from

Sa = S, )

The response acceleration, S,, can also be determined for
a series of single-degree-of-freedom systems with different
natural periods, and damping ratios subjected to a given
acceleration time-history, x"4(t). A plot of the response
accelerations against the periods, and damping ratios of the
series of systems are termed the response acceleration
spectrum. If the acceleration time-history, x"(t), is known,
Xmax» the maximum displacement of the structure can be
determined from equation (5). If the velocity spectrum is
known, Xmax ¢an be determined from

Keany = -SV/0)

If the acceleration spectrum is known, the maximum
displacement can be determined from:

Xmax = Salw?

The maximum base shear Xax in the structure can be
calculated from

Xmax = KXmax-

"0L251HG" BY TANDC (U:5.0.5)
%0 mr—m—— 7 — 7 T T T T T T T
I
0.6t
+

r

FIGURE 2

N-S component of Dalton earthquake of 4th July, 1977 as
recorded at Oolong (partly synthesized).

Computer programme for deriving
response spectra from digitized strong
motion accelerograms

Because typical ground motions x(t) are often very complex,
dynamic equations of motion are generally solved numerically
with a computer. These equations are solved either in the form
of the differential equation shown in equation (2), or the
Duhamel Integral Equation given by:
t
xt) = — =1 [ x"(ne-2(-Dsin[wV1-NZ(t-r)]dr ®)
A °
where t is a point in time at which the response is being
calculated, and 7 is a point in time at which the acceleration
impulse occurred.

Much effort has gone into the development of computer
programmes for solving dynamic equations of motion in the
past thirty years or so and many procedures have been
developed (Milne, 1953; Berg, 1963; Cakiroglu and Ozmen,
1968; Nigham and Jennings, 1969; Wilson, Farhoomand and
Bathe, 1973; Alderson and Winter, 1980).

As an algorithm for generating response spectra based on
a modification of an existing computer programme SARSPEC
derived by Alderson and Winter (1980), was found to be an
efficient and fast running programme for deriving response
spectra, it was adopted by the writer for deriving the example
response spectra which appear in Figs. 3-5. These response
spectra relate to the Dalton earthquake of 4th July, 1977
(Mumme and McLaughlin, 1985; Mumme, 1981). (See Fig. 2).

This programme requires input in the form of digitized
accelerometer data at specified time intervals, and provides
the output as acceleration, velocity and displacement
response spectra for 0, 1, 2, 5 and 10% critical damping.

Conclusions

Acceleration, velocity and displacement response spectra
were derived using acceleration time-histories which have
been corrected for non realistic drift with time.
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Such spectra can be readily computed using an algorithm
based on a modification of an existing computer programme
SARSPEC derived by Alderson and Winter (1980).
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FIGURE 3

Acceleration response spectra for the N-S component of the
Dalton earthquake of 4th July, 1977.
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FIGURE 4

Velocity response spectra for the N-S component of the Dalton
earthquake of 4th July, 1977.

Time Domain CSMT Method

Y. Murakami
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Summary

CSAMT method is widely used in Japan for mining and geo-
thermal exploration. For geothermal applications we need to
study the subsurface structure as deep as 2 km or more. This
shifts the CSAMT survey to a relatively lower frequency range,
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FIGURE 5

Displacement response spectra for the N-S component of the
Dalton earthquake of 4th July, 1977.
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where the CSAMT method tends to become less reliable and
less efficient. For this reason we are developing a time domain
version of CSMT method at the Geological Survey of Japan.
Using a controlled source excitation with a period of four
seconds the waveforms of electric and magnetic fields are
measured. Noisy data are rejected by visual inspection, and





