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Inversion of Time Domain Spectral IP Data

R. J. G. Lewis
Liddington Technology Pty Ltd
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Blackmans Bay Tas 7152 Elliot Tas 7325
Australia Australia
Summary

A part of the Tasmanian Mines Department’s Mount Read
Volcanics Project involved the collection of IP data from a
variety of materials to define the expected signatures of
massive sulphides, barren sulphides, alteration zones and
relatively unaltered host rocks. In all data were collected from
some 70 sites using time domain equipment. These data
provide a unique uniform collection of in situ property
measurements for western Tasmania.

The possibilities of mineral discrimination by fitting Cole-Cole
models to the in situ data appear excellent. The economic

Mitre Geophysics Pty Ltd

massive sulphides are characterised by a distinct field of m-
tau values bounded on the lower m side by a class of black
shales and on the low tau side by other sulphide
mineralization.

Discussion

In terms of polarizable targets, the West Coast of Tasmania
contains a variety of ecomomic and barren sulphide deposits,
together with black shales. These form a number of world-
class mines including the Renison Bell tin mine, the Mt Lyell
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copper-gold ore bodies, the Rosebery base-metal mine and
the recently discovered Hellyer deposit together with a large
assortment of polarizable but uninteresting formations. The
Tasmanian Mines Department recently initiated the ‘Mount
Read Volcanics’ project involving projects in geology,
geophysics and geochemistry, aimed at enhancing the
understanding of the mineral deposits of western Tasmania
and encouraging further exploration.

One of the experimental aspects of the geophysical part of
the project involved the collection of time domain IP data from
a wide range of materials using in situ measurements with
small electrode spacings of 1-2m. In all some 70 sites were
studied including traverses through ore in mines at Mt. Lyell,
Rosebery and Que river, a barren pyrite deposit at Chester,
a selection of black shales and alteration zones.

The purpose of these measurements was threefold. Firstly,
to obtain a uniform systematic set of basic rock properties for
geophysical modelling and the interpretation of field data,

secondly to secure data to add to the information on the

geophysical ‘signatures’ of known deposits, and thirdly to
experiment with the possibility that spectral IP parameters
might be of use in target discrimination. Some preliminary
studies by Bishop & Lewis (1984) and Mather (1985) had
indicated that discrimination might be feasible.

The data was obtained with a standard Huntec Mark IV
receiver and included both full and partial waveform
recordings. A uniform set of observations using a 50ms delay
followed by 10 windows of 150ms was obtained together with
some data using other windows. At this time only partial
waveforms have been analysed using essentially the method
outlined in Lewis (1985). There is thus the possibility of
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FIGURE 1
m-tau plots for the Rosebery Mine IP data.

improving parameter resolution using selected other data from
the rest of the waveform. Interpretation involves the iterative
non-linear least squares fitting of parameters to data using
an anologue of the well known Marquardt algorithm. While
previous work has examined in detail the quality of fit between
model and data, here the process was regarded as a simple
production tool and all results have been used without
selection.

The results may be conveniently examined in diagrams where
various combinations of the 4 Cole-Cole parameters are
plotted against one another. For discrimination purposes it
seems that tau-m and c-m plots are the most useful.
Preliminary work at Rosebery and Hellyer suggested that a
pattern, the ‘Rosebery Trend’ characterised these deposits
(Fig. 1.). In contrast, results from the Chester Mine, a massive
barren pyrite deposit (Fig. 2) show that the Chester
mineralization falls within the uninteresting target field of the
older data. A further example of the central volcanic belt
sulphide mineralization from Howard’s Anomaly on the
Anthony Road, is also quite distinct from the other economic
mineralizations (Fig. 3).
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FIGURE 2

Special IP data for the barren pyrite deposit at Chester.

Alteration zones near mineralization can show appreciable
frequency dependence but high resistivities and modest time
constants, higher than some of the black shales, as shown
in data from the Hercules Mine area (Fig. 4 and 5).

In summary the material of western Tasmania show a wide
range of Cole-Cole properties which may be synthesised as
shown in Fig. 6. The economic targets are characterised
by high values of m and tau and on such a criterion are quite
distinctive.
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