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hundred kilometres from the coast. The studies have closely
defined these anomalous fluctuations and in particular a new
study has defined the coast effect where it is a maximum over
the continental slope. The results could already be used to
accurately correct for temporal magnetic fluctuations
occurring during regular magnetic surveys.

The anomalous magnetic fluctuations are also being used to
define the electric conductivity structure of the Australian
continental margin. As well as providing tectonic information,
the resulting conductivity models may allow prediction of the
geomagnetic coast effect at other parts of the Australian
continent.
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Summary

The estimation of the seismic velocity field in two or three
dimensions, by modelling the travel times of particular seismic
phases or by matching observed and computed seismograms,
represents a large-scale nonlinear inverse problem. The
solution can be obtained by determining the minimum of a
misfit function between observations and theoretical
predictions, subject to some regularisation conditions on the
behaviour of the model parameters. The minimisation can be
achieved without the inversion of large matrices by using a
search scheme based on the local properties of the misfit
function. At each step in the iterative process, a subspace
of a small number of directions is constructed in model space
and then the minimum sought in a quadratic approximation
on this set. At least two directions are required for rapid
convergence. This approach is very suitabie when the model
parameters are of different types, since partitioning by
parameter class avoids dependence on scaling.

If the model is to remain close to a reference then the
regularisation term is particularly important and different types
of a priori information (e.g. geological) can be introduced via
the character of this term. When fit-to-data is emphasised
there is the chance of finding features suppressed in a more
conservative approach, but at the risk of introducing spurious
detail.

Introduction

The estimation of the seismic velocity field plays a central role
in many aspects of seismology, yet none of the measurements
we make give the seismic velocities directly. We have to resort
to indirect methods 1o infer the velocity parameters based on
particular physical models, e.g. the recovery of interval
velocities from stacking velocities depends on the assumption
of some form of stratification.

When an attempt is made to reconstruct the seismic velocity
field in two or three dimensions using surface or down-hole
observations, we are faced with a large scale inverse problem.
If we use the full seismic waveforms from many receivers, the
number of data points is of the order of 109, and 105-106
model parameters need to be estimated to produce a full two-
dimensional picture. Even if attention is concentrated on travel
time picks for particular seismic phases, there will often be
many thousand data values and hundreds of model para-
meters. In this case, the likely resolution is lower so that a
coarser parametrisation of the velocity field is appropriate.

Inversion for the velocity field

The aim of an inversion procedure is to generate a set of
model parameters for which the calculated values of the data
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points fit the observations, and also to provide information on
the reliability of the model estimates. For seismic traces or
travel times the functional dependence of the data on the
parameters of the proposed velocity field is nonlinear (e.g.
the ray paths along which the travel times are to be calculated
themselves depend on the velocity distribution). Thus we seek
efficient computational procedures which can cope with large
problems and also deal with the nonlinearity.

We need to choose some measure of the misfit between data
and theoretical predictions, and also to establish a regularis-
ation criterion on the model parameters to prevent unreason-
able behaviour. This condition will normally place limits on
the deviations from a specified reference model. If the
statistics of the data residuals can be estimated, then a
maximum likelihood estimator of the data misfit is to be
preferred to the usual sum of squares of scaled residuals. The
goal of the inversion will be to reduce the data misfit to below
an acceptable level by adjusting the model parameters subject
to the regularisation constraints.

We now wish to minimise the data misfit. For a limited number
of model parameters this can be achieved by direct search
(Sambridge & Kennett, 1987) or Monte-Carlo methods
(Rothman, 1986), but these techniques cannot be used
effectively for many hundreds of parameters. Inversion of large
matrices can be avoided by adopting a search scheme based
on the local properties of the data misfit, which leads to an
iterative update of the model parameters. The simplest
approach is to use a single direction of search at each step
(usually the gradient of the misfit function), but the rate of
convergence is often slow (Tarantola, 1987). The efficiency
of the procedure can be improved by the introduction of further
directions so that the minimisation search is carried out in
a ‘subspace’ of the model parameters (Kennett & Williamson,
1987). Suitable second directions are the rate of change of
the gradient of the misfit function or the gradient of the
regularisation term. In many cases it is undesirable to attempt
to resolve fine detail at the start of the inversion, and so the
procedure should be geared to the progressive refinement
of scale as the fit of the proposed model to the data improves.

When the model parameters divide into classes of different
types, the use of simple gradient methods mix contributions
with different characters or physical dimensionality. Such
problems arise, for example, in seismic reflection tomography
with inversion for both the velocity field and the shape of the
reflectors, and in attempts to recover both velocity and density
information from reflection seismograms. The scale-
dependence can be removed by once again using a local
‘subspace’ of the model parameters. The gradient of the misfit
function has to be partitioned into parts associated with each
class of parameters. The analogue of introducing the rate of
change of the gradient requires the inclusion of cross-coupling
between the parameters. For example, with two classes of
parameters, two partial gradients and four directions from the
rate of change of gradients constitute a useful six-dimensional
subspace for estimating the model variation at each stage
of the inversion (Kennett & Williamson, 1987).

Termination criteria

One problem with a minimisation procedure for a nonlinear
functional is that the process may converge to a local

minimum where the level of data misfit is not reduced below
the desired threshold. In this case there may be no alternative
but to start the inversion afresh from a different starting model,
in the hope of coming closer to the global minimum of the
misfit.

It is also possible to reach a set of model parameters whose
fit to data is satisfactory but for which the regularisation
conditions are not satisfied. In this case a further minimisation
is needed to reduce the regularisation term to the required
level. The situation is sketched in Fig. 1. The region in model
space for which the fit between observations and theoretical
predictions is below the prescribed threshold is indicated by
D. The region for which the regularisation constraints are met
is indicated by R. Those models whose parameters lie in the
intersection of D and R (shaded in Fig. 1) meet both criteria
and are suitable candidates for acceptance.

If the model which deviates least from the reference model
is desired (in some sense the one with least new detail) then
this is to be found on the edge of the region D within R and
is indicated by the filled star in Fig. 1. When, however, fit-to-
data is paramount, the required model will lie at the edge of
region R within D and is shown by the open star in Fig. 1.
Such a model will possibly include some spurious detail but
might show up relevant features suppressed in a more
conservative approach. A measure of the resolution of
features in the constructed seismic velocity field can be
obtained by looking at a sequence of models with a different
balance between data fit and regularisation.

The character of the regularisation term will have a strong
influence on the class of acceptable models and can be
arranged to allow the inclusion of a priori information on the
likely nature of a successful model. Such information might
come, for example, from external geological input.

Model Space

Data Fit

Regqularisation
FIGURE 1

The domains D of acceptable models by data fit, and R by
regularisation criterion, the shaded zone of overlap in model
space meets both requirements.
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