Abstracts of Papers Appearing in Geophysics, Volume 49, Number 11, November 1984

M. W. Asten. Array estimators and the use of microseisms for reconnaissance of sedimentary basins

A 'natural field' seismic technique is possible to attain by observing microseisms with a suitably designed array and by digitally processing the data to obtain estimates of the phase velocities of Rayleigh waves. Wavelengths of interest in detecting depth to the basement of sedimentary basins are in the range 2 to 20 km, and correspond to wave periods from 1 to 7 s. An array of five or seven seismometers deployed as an expanding cross configuration simplifies field procedures and is adequate for phase velocity measurements of Rayleigh waves in the required wavelength range, provided highresolution frequency-wavenumber spectral analysis is used. This analysis can be implemented on a minicomputer in the field. Results obtained from observation in a sedimentary basin of known structure show predominantly fundamentalmode Rayleigh wave propagation. The scatter of velocity estimates is small enough to allow inversion by curve matching, and depth to the basement can be computed to an accuracy of ±30 per cent without requiring restrictive assumptions of a seismic velocity structure.

D. E. Biswell, L. F. Konty and A. L. Liaw. A geophone subarray beam-steering process

The outputs of geophone array elements are conventionally summed into a single output trace. This summation attenuates incoherent noise, horizontally propagating surface waves, and obliquely incident events. The geophone subarray beamsteering process is a plane-wave stacking technique which removes the differential moveout and improves the resolution of seismic data by directing the subarray peak gain to the incident angle of the seismic wavefront. The plane-wave stacking process transforms the data from the offset domain to the ray parameter (p) domain, and restricts the range of p as a function of time. Studies of synthetic and marine field data show that the beam-steering process improves the signal-to-noise ratio of obliquely incident events as compared to conventional subarray summing operations. The beam-steering process. compressing high-density data while preserving the highfrequency content of the seismic signal, is a cost-effective technique to process large quantities of closely spaced seismic data for stratigraphic exploration.

R. Wilkens, G. Simmons and L. Caruso. The ratio V_p/V_s as a discriminant of composition for siliceous limestones

The ratio of the velocity of compressional waves, V_{D} , to the velocity of shear waves, Vs, is an important parameter for interpreting geophysical field data. Recent studies have emphasized the role played by pore geometry in controlling V_p/V_s in homegeneous rocks. We measured the carbonate content of a set of siliceous limestones of varying proportions of carbonate and silica and observed the pore structures of these samples using a scanning electron microscope. The range of V_D/V_S of individual samples during increasing confining pressure is consistent with crack-closure theory. However, the value of V_p/V_s within the sample set as a whole is dominated by its carbonate content. Variations in V_p/V_s due to total porosity and pore geometry are around 0.1, whereas the change due to composition is 0.4. Values of pore aspect ratios gained from comparison of the velocity-porositycomposition data with theory are in good agreement with the electron microscope observations.

R. L. Kirlin, L. A. Dewey and J. N. Bradley. Optimum seismic velocity estimators

Six 'optimum' estimators for the root-mean-square (rms) seismic velocity are given and analyzed by simulation for rms error. Two of the estimators are used to test use of a priori velocity information in a Kalman-type improvement on the time measurements. Parameters varied include centre-point depth (time), a priori velocity variance, and interdelay-estimate correlation. The maximum likelihood estimator is shown to be best when a priori information is relatively good, but a least-mean-square estimator is equally good otherwise.

W. S. Harlan, J. F. Claerbout and F. Rocca. Signal/noise separation and velocity estimation

A signal/noise separation must recognize the lateral coherence of geologic events and their statistical predictability before extracting those components most useful for a particular process, such as velocity analysis. Events with recognizable coherence we call signal; the rest we term noise. Let us define 'focusing' as increasing the statistical independence of samples with some invertible, linear transform *L*. By the central limit theorem, focused signal must become

264 Abstracts

more non-Gaussian. A measure F defined from cross entropy measures non-Gaussianity from local histograms of an array, and thereby measures focusing. Local histograms of the transformed data and of transformed, artificially incoherent data provide enough information to estimate the amplitude distributions of transformed signal and noise; errors only increase the estimate of noise. These distributions allow the recognition and extraction of samples containing the highest percentage of signal. Estimating signal and noise iteratively improves the extractions of each. After the removal of bed reflections and noise, F will determine the best migration velocity for the remaining diffractions. Slant stacks map lines to points, greatly concentrating continuous reflections. We extract samples containing the highest concentration of this signal, invert, and subtract from the data, leaving diffractions and noise. Next, we migrate with many velocities, extract focused events, and invert. Then we find the least-squares sum of these events best resembling the diffractions in the original data. Migration of these diffractions maximizes F at the best velocity. We successfully extract diffractions and estimate velocities for a window of data containing a growth fault. A spatially variable least-squares superposition allows spatially variable velocity estimates. Local slant stacks allow a laterally adaptable extraction of locally linear events. For a stacked section we successfully extract weak signal with highly variable coherency from behind strong Gaussian noise. Unlike normal moveout (NMO), wave-equation migration of a few common-midpoint (CMP) gathers can image the skewed hyperbolas of dipping reflectors correctly. Short local slant stacks along midpoint will extract reflections with different dips. A simple Stolt (1978) (f-k) type algorithm migrates these dipping events with appropriate dispersion relations. This migration may then be used to extract events containing velocity information over offset. Offset truncations become another removable form of noise. One may remove non-Gaussian noise from shot gathers by first removing the most identifiable signal, then estimating the samples containing the highest percentage of noise. Those samples containing a significant percentage of signal may be zeroed; what remains represents the most identifiable noise and may be subtracted from the original data. With this procedure we successfully remove ground roll and other noise from a shot (field) gather.

A. J. Berkhout. Multidimensional linearized inversion and seismic migration

This paper discusses the close relationship between seismic migration and multidimensional inversion according to the linearized inverse scattering theory. The linearized inverse scattering approach represents a mixed modeling-inversion procedure. Unlike seismic migration, the actual inversion process is carried out on the difference between a modeled reference response and the actually measured data. The output is generally presented in terms of the elastic parameters of the medium. Siesmic migration represents a direct inversion method: the downward extrapolation process is carried out directly on the measured data. Output is presented in terms of reflectivity. If the reference medium has been chosen in such a way that (1) the total wave field in the reference medium can be split into a downward traveling source wave field and an upward traveling response (the propagation of both wave fields being defined by the one-way wave equation) and that, (2) the upward traveling response in the reference medium can be

neglected with respect to the upward traveling response in the actual medium, then seismic migration and linearized inversion define identical inversion processes. Typically, the above conditions are fulfilled in a homogeneous reference medium. In iterative multidimensional inversion, the full inverse scattering problem is approached by a number of linearized inversion steps. I show that each linear step consists of a prestack migration process and a prestack modeling process, the modeling output being used to remove the contribution of multiple scattering. Finally, I argue that for a proper inversion process, information on the elastic parameters outside the seismic frequency bandwidth (temporarily and spatially) should be accounted for in the reference medium.

P. Temme. A comparison of common-midpoint, single-shot, and plane-wave depth migration

A comparison of common-midpoint (CMP), single-shot, and plane-wave migration was made for simple two-dimensional structures such as a syncline and a horizontal reflector with a laterally variable reflection coefficient by using synthetic seismograms. The seismograms were calculated employing the finite-difference technique. CMP sections were simulated by 18-fold stacking and plane-wave sections by slant stacking. By applying a finite-difference scheme, the synthetic wave field was continued downward. The usual imaging condition of CMP migration was extended in order to carry out migration of single-shot and plane-wave sections. The reflection coefficient was reconstructed by comparing the migrated wave field with the incident wave field at the reflector. The results are: (1) all three migration techniques succeeded in reconstructing the reflector position; (2) as a consequence of the finite aperture of the geophone spread, only segments of the reflector could be reconstructed by single-shot and planewave migration; (3) for single-shot and plane-wave migration the reflection coefficient could be obtained; and (4) CMP migration may lead to incorrect conclusions regarding the reflection coefficient.

B. S. Byun. Seismic parameters for transversely isotropic media

One of the most important problems in exploration seismology is to relate the surface seismic measurements with the subsurface geologic parameters. The concept of wavefront curvature has been in extensive use for this purpose. Byun (1982) developed relationships between several measurable seismic parameters (e.g. geometrical spreading and normal moveout velocity) and parameters of the media with elliptical velocity dependencies. This paper extends the wavefront curvature concept to more general, transversely isotropic media. After a brief discussion on ray tracing, a procedure is developed to describe the local properties of the ray based on an elliptical surface fit to the actual wave surface. The apparent velocities of the elliptical fit are then used to generalize the seismic parameters developed in Byun (1982). Simple numerical experiments are given to demonstrate the explorational significance of the theory. It is shown that the measurements of the normal moveout velocity are not sufficient to estimate the velocity structure of the transversely isotropic medium. The 'side-slip' effect can lead to significant errors in depthmapping dipping reflectors.