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1. Introduction

The quantitative interpretation of gamma-ray logs from
uraniferous zones has usually been performed using a
technique almost twenty years old, known as the iterative
approach (Scott 1963). More recently, Conaway and
Killeen (1978) showed, based on theoretical studies of
eastern European workers (e.g. Suppe & Khaikovich 1960),
that an inverse filter could be derived which, when con-
volved with the recorded log, could remove the effects of
the logger’s impulse response and so obtain the true radio-
metric assay profile in the drill hole. This technique, which
is much more efficient in terms of computation time than
the earlier iterative approach, is known as the inverse filter
technique.

The present paper introduces a new technique for the
deconvolution of gamma-ray logs. This new technique is
about equally as efficient as the inverse filter method in
deconvolving a recorded log. However, it does have an
advantage in that no theoretical assumptions are made
about the nature of the gamma-ray impulse response of the
logger. Rather, the deconvolution operator is determined
experimentally in artificial test pits or directly in field
driil holes.

2. Deconvolution by Optimum Error Distribution

Mereu (1976) described a technique for deriving the
weights of a wave-shaping filter F, which, when convolved
with a given input signal, produced a desired output signal.
The algorithm for computing the weights of the filter is:

F =G+*S,
where

S = the cross-correlation function of the input
signal W and the desired output-signal D,

G = Fl*Fz*F3*, P FN

= a symmetric filter which is derived from the

auto-correlation function R of the input signal
as follows:

F; = R with signs of alternate terms changed,

F, = R=F, with signs of alternate non-zero terms
changed,

Fn = R*Fi=F,, ..., Fy—; with signs of alternate
non-zero terms changed.
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Deconvolution of Gamma-ray Logs by
Optimum Error Distribution

Mereu’s filter is similar to the more familiar Wiener filter
{e.g. Robinson 1967) except that errors in the latter are
distributed across the filter, whereas those of the former
can be moved away from the area of interest and so an
error free, or more correctly, an ‘optimum error distribu-
tion’ filter is produced. Mereu (1978) subsequently followed
his theoretical work by publishing a Fortran computer
program listing to compute the weights of F.

The problem now is to obtain data experimentally which
can be used to determine F by the optimum error distribu-
tion algorithm.

3. Artificial Test Pit Data

Artificial test pits have been built by the Australian Mineral
Development Laboratories at their Frewvilie site in South
Australia (Wenk & Dickson 1981; see also Milton 1982, this
issue). Figure 1 shows a schematic section of the pits. Their
dimensions and grades of mineralisation are listed in Table
1. The ore zones are thick enough to be considered to be
infinitely thick (International Atomic Energy Agency
1976). Pit 2 was logged carefully with a digitally-recording
logger, and the resulting curve was differentiated each 0.05
m and 0.10 m in a fashion similar to that used by Scott
(1963) to determine the anomaly produced by bodies of
unit thickness. For a body of thickness 0.05 m, the com-
puted anomaly each 0.05 m, expressed as a percentage of
that observed opposite the centre of the body, is {1.1, 1.8,
3.3, 6.7, 12.2, 21.1, 36.1, 66.1, 100.0, 66.1, 36.1, 21.1,
12.2, 6.7, 3.3, 1.8, 1.1} . For the body of thickness 0.10 m,
the corresponding anomaly each 0.10 m is {1.1, 3.3, 12.2,
36.1, 100.0, 36.1, 12.2, 3.3, 1.1}. These series represent
the given wavelets W. The desired wavelets in each case have
unit value at the centre of the sequence and zeros elsewhere.

These sequences W and S have been given as input to the
computer program and the outputs are shown in Fig. 2.
Also shown in Fig. 2 are the inverse filter weights as deter-
mined by Conaway & Killeen (1978). Note that the two
filters are almost identical for 10 cm sampling intervals, but
for 5 cm sampling there are more non-zero coefficients in
the optimum error distribution filter than in the inverse
filter. Consequently, the two filters are of equal efficiency
as measured in terms of computer time for 10 cm sample
intervals. For 5 cm sampling, the new filter is slower than
the inverse filter technique.
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TABLE 1
AMDEL TEST PITS AUPELTESTRITS
Parameter Pit1 Pit2 Pit3
t (m) 1.04 161 1.83
t; (m) 141 1.45 1.43
t; (m) 3.45 3.04 2.84
Ore Barren Ore Barren Ore Barren
eU; 05 (%) 0.20 - 0.920 - 0.054 -
U305 (%) 0.179 5ppm  0.822 2ppm  0.047 3 ppm
— U30s/eUs0  0.86 0.89 0.87
ThO, (ppm) 10 6 5 3 4 3
K (%) 0.76 0.51 0.76 054 0.55 0.53
Ground level Specific 2.14 222 2.14 2.18 247 2.19
gravity {(dry)
t, Upper Barren Zone Specific 2.31 2.35 2.34 2.35 2.35 2.36
gravity {wet)
—— — _— Porosity (%) 17 13 19 17 18 17
t Ore Zone
2 4. Example
N S I Figure 3 shows part of a log recorded each 0.10 m in DDH
S$1/166 at the Ranger One uranium orebody in the Northern
Territory of Australia. Also shown in this figure is the
deconvolved log. The inverse filter method of interpretation
t, Lower Barren Zone produced a total grade-thickness product of 0.00563 m%
eU;0g between 70.0 m and 71.56 m, while the technique
of deconvolution by optimum error distribution indicated
~ tos an identical total grade-thickness product over the same
- | mm - interval.
]
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FIGURE 1 ;;5
Generalised cross section, AMDEL test pits. The values of the ; 1
parameters are shown in Table 1. % |
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(A) — Inverse filter (left} and optimum error distribution decon-
volution (right) filter coefficients for a sampling of 10 cm.

Part of gamma-ray log from DDH $1/166 at Ranger One {below),

(B} — Inverse filter {left) and optimum error distribution decon- and inversion solution computed by optimum error distribution
volution (right) filter coefficients for a sampling interval of 5 cm. deconvolution (above).
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5. Discussion

This study has shown that an alternative, entirely experi-
mentally-oriented deconvolution operator can be obtained
for recovering the true radiometric assay profile from a
recorded gamma-ray log. It is as efficient as the inverse
filter approach for logs recorded each 0.10 m in a drill hole,
though marginally slower for logs recorded each 0.05 m.
Its advantage over the inverse filter method is that no
theoretical assumptions about the nature of the gamma-ray
impulse response are made. Providing good calibration
facilities are available, the new system automatically
accounts for the finite tength of a scintillation crystal
detector, and the ratemeter time constant distortion which
is inherent in logs recorded using analogue chart recorders.
However, it does have disadvantages in that it is highly
system and procedure-oriented. The deconvolution filter
is unique to each type of logger, and new filters are required
for each new logging speed and sample interval chosen for
a given logging unit.
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