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Abstract

The usual integral form for the two-dimensional Green’s
function (a cosine transform) is evaluated in closed form.
This alternative form is particularly useful when calculations
have to be performed on a mini-computer.

1. Introduction

Because the number of mining companies owning mini-
computers has increased, there is a corresponding increase
in interest in the modelling of electromagnetic fields. A
particular scheme for modelling the scattering of electro-
magnetic fields has been described by Hohmann (1971).
The basis of the scheme is the solution of an integral
equation, and to that end a Green's function must be
evaluated many times. A particular feature of the Green's
function is that it is the cosine transform of a function
which depends on the vertical distance of a buried line
source. In fact, the Green’s function is also used to describe
the electromagnetic fields about a line source. Because of
the oscillating nature of the cosine function, the numerical
integrations are slow and often inaccurate. The inaccuracies
arise because it is usual to integrate between successive
zeros of the cosine function and then to add all the terms
together. The point is that when such a calculation is
performed on a mini-computer, errors can arise because of
numerical ‘round-off’. The purpose of this paper is to pre-
sent closed form expressions for the electric and magnetic
Green'’s functions. By such means it is possible to avoid the
problems mentioned above.

2. Electric Green’s Function

The function used by Hohmann is G{x!,z!;x,z) and it is
defined by egn 1:
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Here an et time dependence has been assumed; the point
{x!,2') represents the source point while the point (x,z)
denotes the position at which the function is to be
evaluated. See Fig. 1.
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The conductivity and permittivity of the ground are ¢; and
€; respectively. The permittivity of the air is €q and all per-
meabilities have been assumed to be the same as for free
space, lg.

When displacement currents are neglected, egn (1) may be
reduced to:
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Geometry for the Green’s Function
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FIGURE 2
Path for the contour integrals

Ko (z) is the modified Bessel function of argument z.

The remainder of this section is concerned with the evalu-
ation of the term denoted by 1.

To proceed, one notices that the term | is the sum of two
terms denoted by I* and 1" where
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In making this choice it is assumed that (x—x') = 0. In
the event that this is not the case, the two terms are inter-
changed. Consequently it is possible to assume that the
term (x—x!) is positive.

Notice that I" and 1™ are analytic in the upper and lower
A planes with branch points at A= +ik; and —ik, respec-
tively. Also, the stationary points of
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are at A= xik, sin{@)
Here (z+z') = Pcos(¢);
(x—x') = Psin(¢)
and P = V{(x—x")? +(2+2")?)
¢ = arctan(Ix—x'l /(z+z'))

These observations suggest that the paths of integration for
1" or I” be deformed to the paths C; and C, respectively.

To proceed, one divides the path of each integral into two
parts. The first part is to *ik,sin(¢} respectively, and the
second part is to infinity via the points A and B respectively.
The variable of integration is now changed in all of these
integrals. In the integrals between 0 and tik, sin(¢) one

sets A = xik,sin{a) respectively, and in the integrals between
* ik sin{¢) and infinity one writes A = %k, sinh(@) respec-
tively. Next, notice that the integral along AB vanishes
because of Jordan's theorem.

By this means one finds that
®
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The expression for | can now be reduced by straightforward
integration to:
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Here we have made use of the integral representation for
the modified Bessel function, i.e.
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See Abramowitz & Stegun (1964, p. 376, No. 9-6-24).

The remaining integral may be expressed in terms of
modified incomplete Struve functions of orders zero and
one. The other quantities needed are modified and incom-
plete Bessel functions also of zero and unit order. A full
discussion of this matter can be found in the book by
Agrest and Maksimov (1971, p. 289). Since numerical
results are required, however, it is easier to use eqn 5.

In terms of the initial rectangular co-ordinates one finds
that the expression for the electric Green's function is:
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%. The Magnetic Green’s Function

Cnce the electric field is known it is a simple matter to
calculate the associated magnetic fields. To this end we
require the derivative of G with respect to x or z. In fact, if
GH, and GH, are respectively the vertical and horizontal
Green’s function for the magnetic fields, then

GH. = 1. oG
x iWko a_z_
and
GH —1 %8 8)
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After some tedious but not unpleasant work one finds that:
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4. Discussion

The expressions given here have uses other than the evalua-
tion of the Green’s function. Thus, the electromagnetic
fields about line sources on or in a uniform ground can be
expressed in terms of the Green’s functions that have just
been described. More specifically, if a current of Ioe‘“’t
flows in a wire, then the electric field E is just
E = 1,e''G (11)
Associated with the electric field are two components of a
magnetic field H, and H,. These quantities are simply

He = 1,e''GH,
and

H,

loe'tGH, (12)
For a discussion of results alternative to those given here,
the reader is referred to Wait & Spies (1971). There the
interested reader will find a table of G for various values
of x and z.
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