Wave equation processing is an obvious area in which rapid and beneficial advances in our industry have been made. While migration is usually the first application associated with wave equation methods, it is by no means the only use. Improved velocity estimates, coherency studies, near surface resolution, modelling, attenuation measurements etc. are but a few of the myriad applications. Use of wave equation processes is an important contributor to the success of the 3-D methods mentioned above. Migration of events on a conventional seismic section deals with the events on that section as coming from the plane of that section. This is, of course, patently absurd, but generally, as true optimists, we have acknowledged the problem, and then promptly done nothing about it. Alas, no longer may we plead such a defence.

Given all the improvements in instrumentation, field techniques and processing, there remains the proof of the pudding — Interpretation. It is a trite but mostly true expression that nearly all the big structures have been drilled onshore Australia — and found wanting.

The nature of the traps that we are exploring requires more than a gross structural interpretation. We are therefore required to use a host of methods even now that were impossible a few years ago. The most obvious interpretative aid for the geophysicist will be the interactive computer terminal. Granted the complexities of programming, it would seem that in the next decade, the masses of data to be handled for interpretation will demand a computer data base even for the housekeeping. The joys of reiterative modelling of an interpretation will become commonplace as we seek finer and more subtle information. The manmachine combination will form a vital synergistic relationship in applications from velocity analysis to contouring. The most elegant algorithms for mathematical optimisation are only an aid to the trained, experienced, human brain in reasoned judgement.

More statistical analysis methods will be used in the future as an inerpretation tool An example is the use of cluster analysis for indentification of genuine gas induced bright spots. The combinations of high amplitude, negative polarities, lower-relative velocities, flat spots, edge diffractions etc. can be studied to separate the real from the maybe.

The relationship of shear and P-wave velocities and amplitudes will yield quantitative estimates of certain elastic constants related to rock type and fluid content.

An extremely important aspect of the interpretative process is the display. The development from the pasted together monitor records through to the variable area section display has often been cited as the greatest single improvement in data processing in the 1950's and early 1960's. A similar improvement is likely in the use of colour displays overlaid on the conventional monochromatic structural section. These colour displays of seismic attributes such as reflection strength, polarity, frequency, phase, velocity and the like increase the visual dynamic range of the interpreter and allow him to more precisely define anomalous zones. In the display of 3-D data, the movie-like succession of horizontal sections known as Seiscrop are valuable tools to the interpreter.

It is apparent that the improvements of the past in our industry and the predicted trends for the future rely heavily on the skills of the people involved. In the ultimate judgement, the interpreter, well trained in geology and geophysics, will provide the resources of the future. This is the key to success in the 1980's.

QUANTIFIED STRATIGRAPHY – AN EXPLORATION APPROACH FOR THE EIGHTIES

Peter R. Vail and Jan Hardenbol

Exxon Production Research Company, P.O. Box 2189, Houston, Texas

Quantified stratigraphic parameters from seismic and well data provide the paleogeographic and facies information necessary for the development of an accurate geologic framework for hydrocarbon exploration. The key parameters are (1) geologic age, (2) sea-level changes, (3) paleobathymetry and paleotopography, (4) subsidence and uplift, and (5) sedimentation rate. This paper discusses how these parameters are quantified from and applied to seismic and well data using seismic stratigraphy and geohistory analysis.

Seismic stratigraphic analysis permits interpretation of the geologic age, paleobathymetry, paleotopography, and gross facies directly from seismic data. Well control provides verification or modification of these interpretations by carefully tying the well control to the seismic data using synthetic seismograms. The well information in turn provides the data for geohistory analysis. This approach quantitatively illustrates the interrelation of the stratigraphic parameters and allows the interpreter to evaluate the effects of each.

This procedure is applied to offshore Western Africa. It demonstrates how quantified stratigraphic parameters affect the interpretation of basin evolution and sedimentary filling and how a quantified stratigraphic framework is developed for hydrocarbon exploration.

THE DEFINITION AND DEVELOPMENT OF THE MACKEREL FIELD

GIPPSLAND BASIN

D.M. Maughan

Esso Australia Ltd. (02) 236 2911

The Mackerel Oil Field located offshore in the Gippsland Basin was discovered in April 1969, with the Mackerel-1 well. The field contains oil in Eocene/Paleocene reservoir sands which lie beneath an unconformity at the top of Latrobe Group. Calcareous shales and mudstones of the Oligocene Lake's Entrance Formation seal the field which is a topographic-erosional feature. By the end of 1973, 235 kms of seismic had been shot in an irregular grid involving