
Azimuthal AVO signatures of fractured poroelastic sandstone layers

Zhiqi Guo1,4 Xiang-Yang Li2,3

1College of Geo-Exploration Science and Technology, Jilin University, 938 Xi Minzhu Street,
Changchun 130021, China.

2State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing),
Beijing 102249, China.

3CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
4Corresponding author. Email: zhiqiguo@aliyun.com

Abstract. Azimuthal P-wave amplitude variation with offset (AVO) offers a method for the characterisation of a naturally
fractured system in a reservoir. This information is important for the analysis of fluid flow during production of, for example,
oil, petroleum and natural gas. This paper provides a modelling scheme by incorporating the squirt-flow model for the
prediction of velocity dispersion and attenuation with azimuthal reflectivity method for the calculation of frequency-
dependent seismic responses.AzimuthalAVOresponses froma fracturedporoelastic sandstone layer encasedwithin shale are
investigatedbasedon theproposedmethod.Azimuthal reflections are a combinationof the dynamic information including the
contrast in anisotropic properties, anisotropic propagation andattenuationwithin the layer, aswell as tuning and interferences.
Modelling results indicate that seismic responses from the top of the sandstone layer are dominated by reflection coefficients,
and showazimuthal variations at far offsetwhich is consistentwith conventional azimuthalAVO theory. Reflections from the
base, however, demonstrate complex azimuthal variations due to anisotropic propagation and attenuation of transmission
waveswithin the layer. Tuning and interferences further complicate the azimuthalAVO responses for thinner layer thickness.
The AVO responses of top reflections show no azimuthal variations for lower fluid mobility, while those of base reflections
show visible and stable azimuthal variations even at near andmoderate offsets for different fluidmobility. Results also reveal
that it would be practical to investigate wavetrains reflected from the fractured layers that are regarded as integrated units,
especially for thinner layers where reflections from the top and base are indistinguishable. In addition, near-offset stacked
amplitudes of the reflected wavetrains show detectable azimuthal variations, which may offer an initial look at fracture
orientations before AVO analysis.
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Introduction

The investigation on azimuthal seismic anisotropy is significant
for the characterisation of fractured reservoirs. Azimuthal
amplitude variation with offset (AVO) provides insights into
properties of a fractured reservoir such as fracture orientation
and fluid saturations. Rüger and Tsvankin (1995, 1997) proposed
a P-wave azimuthal AVO algorithm for fracture detection. Rüger
(1998) extended these works by linearising PP-wave reflection
coefficients in terms of squared trigonometric functions of
azimuth and incidence angle under the approximation of the
weak contrast interface separating two weakly anisotropic
media. Vavry�cuk and Pšen�cík (1998) conducted similar work
byapplying thefirst-order perturbation theory for the linearisation
of formulas. For applications, Pérez et al. (1999) investigated
the method of using azimuthal variations of P-wave AVO for
the detection of fracture orientation. Hall and Kendall (2003)
analysed P-wave amplitude variation with offset and azimuth in
a 3Docean-bottom seismic (OBC) dataset for the characterisation
of natural fractures. Landrø and Tsvankin (2007) investigated
the possibility to characterise fractures using azimuthal critical-
angle reflections. Recently, Far et al. (2013a) incorporated
Monte Carlo simulation for the consideration of uncertainty in
azimuthal AVO analysis. Far et al. (2013b) extended the work to

asymmetric fractures. Furthermore, Far et al. (2014) applied
the method to invert for the effective fracture parameters
for the Marcellus Shale that represents monoclinic symmetry.

Most of theprevious studies onazimuthalAVOresponseshave
been based on the model of a reflecting interface that separates
an overburden layer and a fractured reservoir. However, Sayers
and Rickett (1997) observed that reflections from the base of
a fractured layer at directions parallel and perpendicular to the
fracture strike show greater azimuthal variations than reflections
from the top interface, and concluded that anisotropic propagation
should not be neglected in azimuthal AVO modelling and
analysis. After that, Schoenberg et al. (1999) extended the
work of Schoenberg and Protázio (1992) to incorporate the
effects of propagation and tuning in azimuthal AVO modelling
for anisotropic reservoirs.Meanwhile,MacBeth (1999) investigated
azimuthal P-wave attenuation induced by fluid-flow and
associated behaviour of base reflections. For the description
of velocity dispersion and attenuation, Chapman (2003) and
Chapman et al. (2003) proposed a multi-scale equant porosity
model basedon the squirt-flowmechanism.Chapmanet al. (2005,
2006) investigated frequency-dependent AVO responses for
fluid detection. In addition, Ekanem et al. (2015) investigated
azimuthal seismic attenuation associated with fluid mobility
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predicted by the poroelastic model for the detection of fracture
orientations.

The motivation of this work is to provide an azimuthal AVO
modelling method for poroelastic fractured reservoirs. First,
effective medium theory based on the squirt-flow mechanism
is used for the prediction of velocity dispersion and attenuation
in the fractured sandstone. Then, the squirt-flow model is
incorporated into the azimuthal reflectivity method for the
calculation of frequency-dependent seismic responses. Finally,
variations of AVOwith azimuth from the top and base interfaces
of the fractured unit, and those from the integrated unit, are
investigated for the detection of fracture orientations.

Model and parameter for poroelastic sandstone reservoir

Rock physics model for fractured medium

In this study, the model developed by Chapman (2003) and
Chapman et al. (2003) is used for the calculation of frequency-
dependent stiffnesses:

Cijkl ¼ Cijklðl; m;o; t; �; e; kf Þ ð1Þ
where l and m are Lame parameters, o is frequency, t is time
scale, f is porosity, e is fracture density, and kf is fluid bulk
modulus.

The anisotropic elastic tensorCijkl is calculated by considering
the perturbation Cijkl

1 associated with fractures, cracks and pores
in the isotropic elastic tensor Cijkl

iso of the matrix:

Cijkl ¼ Ciso
ijklðl; mÞ � C1

ijklðl; m;o; t; �; e; kf Þ ð2Þ
We denote �l and �m as the reference Lame parameters at a

specified porosity f given by

�l ¼ rV 2
Pð�Þ � 2rV 2

Sð�Þ ð3Þ

�m ¼ rV 2
Sð�Þ ð4Þ

where r is density, VP and VS are P- and S-wave velocities at a
reference frequency o0

V P ¼ V Pð�jo ¼ o0; kf ¼ k0f ; e ¼ e0; t ¼ t0Þ ð5Þ
V S ¼ V Sð�jo ¼ o0; kf ¼ k0f ; e ¼ e0; t ¼ t0Þ ð6Þ

and kf
0, e0, and t0 are fluid bulk modulus, fracture density, and

time scale ato0. Accordingly, the isotropic tensor can be defined
as:

Ciso
ijkl ðL;MÞ ¼ Ciso

ijklð�l; �mÞ þ C1
ijklð�l; �m;o0; t0; �; e0; k0f Þ ð7Þ

where L and Mare frequency-independent Lame parameters.
Then, for arbitrary frequency, time scale, and fluid bulk
modulus, the anisotropic elastic tensor describing fluid-
sensitive dispersion and attenuation in rocks can be defined as:

Cijkl ¼ Ciso
ijklðL;MÞ � C1

ijklð�l; �m;o; t; �; e; kf Þ ð8Þ
The predicted anisotropic medium represents transverse

isotropy with a vertical axis of symmetry (VTI). Precise
descriptions of the above rock physics model were given by
Chapman et al. (2003).

Parameter for fluid mobility

Batzle et al. (2006) investigated the impact of permeability k and
viscosity on velocity dispersion under controlled petroleum
parameters in their laboratory experiments. They concluded
that elastic properties of media can be significantly influenced
by fluid mobility M defined as

M ¼ k
h ð9Þ

Fluid mobility can be characterised by relaxation time that
controls the time for pore fluids to reach pressure equilibrium.
Two kinds of relaxation time involved in the effective medium
theory are tm for standard microstructural flow and tf in the
presence of fractures, with the relationship given by

tf ¼ tm
af
ac

ð10Þ

where af is fracture radius and ac is grain size. In this work, we
assume the fracture radius is 0.5 m and the grain size is 200 mm.

Because relaxation time is proportional to the ratio of fluid
viscosity h to permeability k,

tf ðor tmÞ / h
k

ð11Þ

fluid mobility M is inversely proportional to relaxation time tf
or tm. The decrease in tf or tm means less time for pore fluids
to reach pressure equilibrium, and thus corresponds to higher
fluid mobility.

In addition, dispersion and attenuation are controlled by the
characteristic frequency f that is defined by the relaxation time tm:

tm ¼ 1
2pf

ð12Þ

Rock physics modelling

Figure 1 shows a reflector model where a sandstone layer with
vertically aligned fractures is embedded in shale. The rock
physics theory in Equations 1–8 describes dispersion and
attenuation of the fractured sandstone by frequency-dependent
and complex-valued anisotropic stiffnesses. For calculations, we
assume that P- and S-wave velocities for the unfractured and
water-saturated sandstone are 3400 m/s and 2000 m/s,
respectively. Density is 2300 kg/m3 and 2200 kg/m3 for water
and gas saturation, respectively. Matrix porosity is assumed to be
0.1. The fractures have a density of 0.05 and radius 1 m.

The property predicted by Equations 1–8 represents VTI
anisotropy. However, the vertically fractured reflector in
Figure 1 represents transverse isotropy with a horizontal axis
of symmetry (HTI) for 0� azimuth, and shows monoclinic
anisotropy for an arbitrary azimuth. Therefore, using the Bond
matrix, we transform the predicted VTI anisotropy to the HTI
anisotropy by rotating 90� around the x2 axis, and further to a
monoclinicmedium by rotating an azimuth around the x3 axis. As
an example, the matrix (13) shows a calculated result at the 45�

azimuth:

Azimuth anisotropy

Reflected wave

Incident wave

h

X2

X1

X3

θ
ϕ

shale

sandstone

Fig. 1. Schematic illustration of azimuthal reflections from a fractured
sandstone layer embedded within a shale background. Incidence angle is
denoted by y, and azimuthal angle by j.
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CMonoclinic ¼
22:64þ 0:65i 6:37þ 0:65i 6:20þ 0:31i 0 0 0:90� 0:35i

6:37þ 0:65i 22:64þ 0:65i 6:20þ 0:31i 0 0 0:90� 0:35i

6:20þ 0:31i 6:20þ 0:31i 25:03þ 0:14i 0 0 0:42� 0:16i

0 0 0 8:67þ 0:00i 0:53þ 0:00i 0

0 0 0 0:53þ 0:00i 8:67þ 0:00i 0

0:90� 0:35i 0:90� 0:35i 0:42� 0:16i 0 0 8:72þ 0:18i

2
666666664

3
777777775
ðGPaÞ

ð13Þ
where imaginary parts of the anisotropic stiffnesses represent
attenuation. The calculation is implemented at 40 Hz frequency.

Because permeability in real reservoirs can span several orders
ofmagnitude,fluidmobilityKor relaxation time tmmay also vary
significantly, leading to velocity dispersion and attenuation at
seismic frequencies, as shown inFigure 2 andFigure 3. Equations
1–8 illustrate the philosophy and general workflow of the rock
physics model, while detailed descriptions for the calculation are
given by Chapman et al. (2003).

In Figure 2a, we can see that P-wave velocity V11 that is
perpendicular to the fracture strike keeps constant at ~3.17 km/s
for the case of tm = 4 � 10�3 s (high frequency elastic limit),
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Fig. 2. Dispersion of (a) P-wave velocity V11 in the direction normal to fracture planes and (b) V33 parallel to fracture planes for the
cases of T1, T2 and T3, corresponding to the relaxation time tm with values of 4 � 10�3 s, 4� 10�6 s and 4 � 10�9 s, respectively.
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Fig. 3. (a) Attenuation factor 1/Q11 in the direction normal to fracture planes and (b) 1/Q33 parallel to fracture planes for the cases of
T1, T2 and T3, corresponding to the relaxation time tm that has a value of 4 � 10�3 s, 4 � 10�6 s and 4 � 10�9 s, respectively.
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Fig. 4. Three-dimensional (a) P-wave velocityVP and (b) P-wave attenuation 1/QP of the sandstone for tm= 4� 10�6 s and
f = 40 Hz. Azimuth varies from 0� to 360� and polar angle from 0� to 90�.
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and drops to a constant ~2.84 km/s for the case of tm = 4� 10�9 s
(low frequency Gassmann elastic limit). In contrast, V11 shows
dispersion at seismic frequencies for the case of tm = 4� 10�6 s.
In Figure 2b, P-wave velocity V33 that is within the fracture
plane shows similar variations as V11, but the magnitude of
corresponding values shows little variation with tm, which
reveals that P-wave propagating in fracture planes is less
affected by fluid mobility. In Figure 3, attenuation occurs with
dispersion for the case of tm = 4� 10�6 s. Attenuation along the
direction normal to fracture planes (1/Q11) is much stronger than
that in the direction parallel to fracture planes (1/Q33).

In Figure 1, anisotropic velocity and attenuation of
transmission waves propagating in the fractured sandstone
for varied azimuth and incidence (or polar) angle should
be considered. In Figure 4a, P-wave velocity VP along the
direction of the fracture strike represents higher values than
that in the direction normal to the fracture strike, and shows
less variation with the polar angle. In contrast, as the propagation
direction derivates from the fracture strike, VP shows more
noticeable dependence on polar angle and decreases
significantly as the propagation tends towards the direction
normal to the fractures. Accordingly, in Figure 4b, the P-wave
shows less attenuation in the direction of the fracture strike and
suffers more attenuation normal to the fracture strike.

Azimuthal AVO modelling for anisotropic layered model

As shown by the calculated matrix (Equation 13), azimuthal
elasticity of the fractured reservoir in Figure 1 represents
monoclinic anisotropy. Therefore, appropriate azimuthal AVO
modelling for such a model should be able to cope with
monoclinic stiffnesses. Accordingly, Schoenberg and Protázio
(1992) generalised the Zeoppritz equations to an anisotropic
layered model by introducing impedance matrices for the
calculation of reflection and transmission coefficients.
Schoenberg et al. (1999) further applied this method for the
investigation of azimuthal reflections from fractured reservoirs.
The method considers a general monoclinic medium that has 13
elastic constants forming the stiffness matrix,

c11
c21
c13
0

0

c16

c12
c22
c23
0

0

c26

c13
c23
c33
0

0

c36

0

0

0

c44
c45
0

0

0

0

c45
c55
0

c16
c26
c36
0

0

c66

2
666666664

3
777777775

ð14Þ

which canbeused for azimuthal descriptions of an equivalentHTI
or orthorhombic medium. In this case, anisotropic media have an
up-down symmetry, and the seismic reflection interface can be
regarded as the plane of mirror symmetry.

The method computes frequency-dependent reflection and
transmission coefficients matrices R and T that have the form

R ¼
RPP RSP RTP

RPS RSS RTS

RPT RST RTT

2
64

3
75T ¼

TPP TSP TTP
TPS TSS TTS
TPT TST TTT

2
64

3
75 ð15Þ

where the first subscript denotes the type of reflected or
transmitted wave and the second subscript denotes the type of
incident wave. Subscript P, S, and T represent quasi-P, quasi-SV,
and quasi-SH wave, respectively.

Assume a harmonic plane wave of unit amplitude in an
anisotropic medium has the form

�1

�2

�3

2
64

3
75 ¼

e1
e2
e3

2
64

3
75 exp½ioðs1x1 þ s2x2 þ s3x3 � tÞ� ð16Þ

where the subscripts 1, 2, and 3 denote components of
corresponding vectors. � = (�1, �2, �3) is the vibration vector
of particle velocity, s = (s1, s2, s3) is slowness vector, and e = (e1,
e2, e3) denotes eigenvector of the slowness vector.

The three-dimensional Christoffel equation for the harmonic
plane wave in Equation 16 in a monoclinic medium is

½GðsÞ � rI�e ¼ 0 ð17Þ
where density of media r is regarded as the eigenvalue of the
eigenvector e, I is unit matrix, and the matrix G(s) has the form

c11s21 þ c66s22 þ c55s23 þ 2c16s1s2 c16s21 þ c26s22 þ c45s23 þ A12s1s2 A13s1s3 þ A45s2s3
c16s21 þ c26s22 þ c45s23 þ A12s1s2 c66s21 þ c22s22 þ c44s23 þ 2c26s1s2 A45s1s3 þ A23s2s3

A13s1s3 þ A45s2s3 A45s1s3 þA23s2s3 c55s21 þ c44s22 þ c33s23 þ 2c45s1s2

2
64

3
75

ð18Þ
with

A23 � c44 þ c23; A13 � c55 þ c13;

A12 � c66 þ c12; A45 � c36 þ c45
ð19Þ

and two horizontal slownesses s1 and s2 are given by

s1 ¼ sin �

a
cos’; s2 ¼ sin �

a
sin’ ð20Þ

where y is the incidence angle, j is the azimuth, and a is the
P-wave velocity of the incidence medium.

For the existence of the non-zero solution of the vector e = (e1,
e2, e3) in Equation 17, we have

jGðsÞ � rIj ¼ 0: ð21Þ
Substituting Equation 18 into Equation 21 gives a bicubic

equation on vertical slowness s3, corresponding to squared
vertical slownesses s3P

2 , s3S
2 , and s3T

2 , satisfying

s23P j < s23S � s23T ð22Þ
where the subscripts denotes waves of the three modes.

Substituting the solved s3P, s3S, s3T, and horizontal
slownesses defined by Equation 20 into Equation 17 gives
eigenvectors eP = (eP1, eP1, eP1), eS = (eS1, eS1, eS1) and
eT = (eT1, eT1, eT1) which describe vibration directions
of particles for each mode of waves. A special case is
s3S = s3T which generates two identical eigenvalue vectors e1
and e2. In this case, eigenvectors eS and eT for quasi-SV and
quasi-SH waves are the linear combinations of e1 and e2,
satisfying

heT; ePi ¼ 0 and heS; eTi ¼ 0 ð23Þ
which guarantee orthogonality between quasi-SH and quasi-P
waves, and between quasi-SH and quasi-SV waves.

Then, the impedance matrix can be constructed from the
derived slownesses and eigenvectors:

X ¼

eP1 eS1 eT1

eP2

�ðc13eP1 þ c36eP2Þs1
�ðc23eP2 þ c36eP1Þs2

eS2

�ðc13eS1 þ c36eS2Þs1
�ðc23eS2 þ c36eS1Þs2

eT2

�ðc13eT1 þ c36eT2Þs1
�ðc23eT2 þ c36eT1Þs2

�c33eP3s3P �c33eS3s3S �c33eT3s3T

2
666666664

3
777777775

ð24Þ
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Y ¼

�ðc55s1 þ c45s2ÞeP3 �ðc55s1 þ c45s2ÞeS3 �ðc55s1 þ c45s2ÞeT3
�ðc55eP1 þ c45eP2ÞeP3

�ðc45s1 þ c44s2ÞeP3
�ðc45eP1 þ c44eP2ÞeP3

�ðc55eS1 þ c45eS2ÞeP3

�ðc45s1 þ c44s2ÞeS3
�ðc45eS1 þ c44eS2ÞeS3

�ðc55eT1 þ c45eT2ÞeT3

�ðc45s1 þ c44s2ÞeT3
�ðc45eT1 þ c44eT2ÞeT3

eP3 eS3 eT3

2
66666666664

3
77777777775

ð25Þ

If denoting the properties of the fractured layer by subscript
‘, the impedancematricesX‘ andY‘ for the layer can be calculated
following the same way described above. Thus, reflection and
coefficient matrices given by Equation 15 are solved by

R ¼ ðA� BÞðAþ BÞ�1 ð26Þ
T ¼ 2ðAþ BÞ�1 ð27Þ

where

A ¼ ðX�1X‘CðohÞX‘
�1X� iX�1X‘SðohÞY‘

�1YÞ ð28Þ
B ¼ ðY�1Y‘CðohÞY‘

�1Y� iY�1Y‘SðohÞX‘
�1XÞ ð29Þ

with diagonal cosine and sine matricesC and S depending onoh
given by

CðohÞ ¼
cosðos‘3PhÞ 0 0

0 cosðos‘3ShÞ 0

0 0 cosðos‘3ThÞ

2
64

3
75 ð30Þ

SðohÞ ¼
sinðos‘3PhÞ 0 0

0 sinðos‘3ShÞ 0

0 0 sinðos‘3ThÞ

2
64

3
75: ð31Þ

The incident P-wave generates reflected PP and model-
converted PSV and PSH waves. Accordingly, Equation 26
gives reflection coefficients RPQ for each frequency, where
Q = P, SV, and SH for different wave modes. Furthermore,
seismograms rPQ can be obtained by multiplying wavelet
spectrum F(o) with frequency-dependent reflection coefficients
RPQ (s1, s2; o), followed by implying the inverse Fourier
transform

rPQ ¼ 1
2p

ð¥
�¥

FðoÞRPQðs1; s2;oÞeiotdowhereQ ¼ P; SV ; SH :

ð32Þ
Azimuthal AVO responses of the fractured layer
We integrate the squirt-flow rock physics model given by
Chapman (2003) with the anisotropic modelling method
developed by Schoenberg et al. (1999) for the calculation of
azimuthal reflection coefficients and synthetic seismograms for
the poroelastic fractured layer in Figure 1. This scheme is an
extendedwork ofGuo et al. (2015)where the authors investigated
frequency-dependentAVOresponses from fractured reservoirs at
the direction normal to the fracture strike. As can be expected, for
the seismic reflection model in Figure 1, azimuthal AVO
responses are associated with fluid mobility in the layer, and
thus include the contrast in impedance across interfaces,
anisotropic propagation and attenuation within the layer and
tuning and interferences.

Specifically, in this study, the azimuthal reflection coefficients
matrix R is calculated by Equation 26, where matrix A and B in
Equation 26 are given byEquations 28 and29. In the computation
of the matrix A and B, anisotropy stiffness cij (i, j = 1, 2, ..., 6) in
Equations 24 and 25 are predicted by the rock physics model
described in the section Model and parameter for poroelastic
sandstone reservoir. Then, for the calculation of PP wave
azimuthal reflection coefficients, RPP can be extracted from
the matrix R as shown in Equation 15. Finally, the PP wave

azimuthal seismogram rPP can be further computed from RPP by
Equation 32.

Synthetic seismograms for layers with
different fluid mobility

According to the classification on the sand reservoir given by
Rutherford and Williams (1989), the type I sand has higher
impedance than the surrounding layer, corresponding to
positive reflection coefficients at normal incidence. The
impedance of the type II sand is close to the surrounding rock
which leads to weak reflection amplitudes. The type III sand has
lower impedance than the surrounding rock, corresponding to
negative reflection coefficients at normal incidence. Sayers and
Rickett (1997) suggested that azimuthal AVO responses are
sensitive to the presence of vertical fractures for the type I sand.

Thus, in Figure 1, we use the type I sand as the reflectormodel,
and assume the surrounding shale has P- and S-wave velocities
3200 m/s and 1800 m/s, and a density of 2100 kg/m3, which are
relatively lower than those of the sandstone. We first consider a
50-m-thick elastic sandstone layer with relaxation time tm = 4�
10�3 s. Anisotropic stiffnesses of the sandstone are predicted by
the squirt-flow model described in the section Model and
parameter for poroelastic sandstone reservoir.

Figure 5 shows the azimuthal PP-wave reflection spectraF(o)
RPP(s1, s2; o), and Figure 6 displays corresponding synthetic

150
(a)

(b)

(c)

(d)

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

0.08

0.06

0.04

0.02

100

50

150

100

50

150

100

50

150

100

50

0 10 20 30 40 50

f (
H

z)

Incidence angle    (°°)θ

Fig. 5. Spectra of PP reflections for azimuth 0�, 30�, 60� and 90�. Sandstone
is 50 m thick and elastic with relaxation time tm = 4 � 10�3 s.
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seismograms calculated byEquation 32. SeismicAVO responses
at four azimuth angles are calculated. Two red arrows on the
seismograms indicate positions of reflections from the top and
base of the fractured layer in Figure 1.

We also calculate azimuthal reflection spectra and
corresponding synthetic seismograms for varied relaxation
time tm for the fractured layer, and illustrate computed results
in Figure 7 and Figure 8 for tm = 4� 10�6 s, and in Figure 9 and
Figure 10 for tm = 4� 10�9 s. Other parameters are kept constant
for these cases.

As shown in Figure 6, Figure 8, and Figure 10, reflections
from the top and base of the layer are distinguishable, and
represent phase reversal after an incidence angle of around
30�. Meanwhile, although reflections within the range below
the 30� incidence angle show visible difference, more noticeable
azimuthal variations in amplitudes and phases occurs for
higher incidence angles. Next, we will examine the reflections
in detail to illustrate the impact of anisotropic propagation and
interferences on azimuthal AVO responses, and investigate the
potential application of the characterisation of fractures using
the observed azimuthal variations.

Reflections from the top and bottom of the layer

Figure 11a, b displays AVO curves picked from seismograms in
Figure 6, corresponding to reflections from the top and base of the
fractured layer, respectively.We can see that for the case of tm= 4
� 10�3 s, top reflections show very subtle azimuthal variation
even for higher incidence angles. In contrast, however, base
reflections show obvious azimuthal variation in AVO
responses even below 35� incidence. AVO responses from the
base showrelatively complexpatternswhere thenegativevalueof
the amplitude increases to zero around incidence angle 35� and
then decreases as the incidence angle increases. Absolute values
of reflection amplitudes decrease as the azimuth increases from0�

to 90� at each individual incidence angle below 35�, and the
opposite trends can be observed beyond the 35� incidence angle.
Anisotropic propagation of the P-wave in the fractured sandstone
layer is responsible for azimuthal reflections from the base of
the layer. This provides an opportunity to characterise fracture
orientations in the case that top reflections show no azimuthal
variation.

Figure 12 and Figure 13 display AVO curves of the top and
base reflections obtained from Figure 10 and Figure 12. For the
case of tm= 4� 10�6 s, top reflections in Figure 12a show visible
azimuthal variations beyond 40� incidence, and for the case of
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tm = 4� 10�9 s, azimuthal variations are noticeable beyond 30�

incidence. Such azimuthal variations of top reflections show a
decrease in absolute-valued amplitudes for higher incidence
angles as the azimuth increases from 0� to 90�. In contrast,
reflections from the base show noticeable and stable variations
for the cases with different fluid mobility.

Integrated wavetrains reflected from fractured layer

The above section shows the variations of azimuthal AVO from
the base of fracture orientations. For thinner layers, however, it
may be impossible to distinguish the top reflection from the base
reflection. In this situation, it would be practical to investigate the
integrated wavetrains reflected from the fractured unit. Figure 14
illustrates azimuthal PP reflections represented by the root-mean-
square amplitudes of the integrated wavetrains in Figure 6,
Figure 8 and Figure 10 for the cases with different relaxation
time tm.

In Figure 14, AVO responses of the reflected wavetrains for
all the three cases of fluid mobility show noticeable azimuthal
variations at each individual incidence angle. For each incidence
angle below 30�, reflection amplitudes decrease as azimuth
increases. For each incidence angle beyond 30�, reflection
amplitudes increase as azimuth generally increases, except the
case of tm = 4 � 10�9 s. By comparing the three cases, the
variation in fluid mobility has little impact on azimuthal AVO
responses below 30� incidence, while it alters AVO features
beyond 30� for smaller tm (or higher fluid mobility).

According to Figure 14, Figure 15 illustrates azimuthal
variations in PP-wave amplitudes stacked from 0� to 30�

incidence angle. The magnitudes of the stacked amplitudes
show the maximum azimuthal variations to be ~11.2% for
tm = 4 � 10�3 s, 10.7% for tm = 4 � 10�6 s and 8.8% for
tm = 4 � 10�9 s. Thus, the azimuthal variation in amplitudes
stacked for near or moderate offset in terms of the integrated
wavetrains may give an initial estimate on fracture orientations.

The case of different layer thickness

As the case for smaller layer thickness, Figures 16and17 illustrate
azimuthal reflection spectra and synthetic seismograms of
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PP-wave for the case of a 20-m-thick fractured sandstone with
relaxation time tm = 4� 10�6 s. In the seismograms, we can see
that smaller layer thicknessmakes it impossible to distinguish the
base reflection from the top reflection. In Figure 18a, the picked
AVO curves indicate that top reflections show visible azimuthal
variations beyond 40� incidence. In Figure 18b, AVO responses
represented by the root-mean-square amplitudes of the integrated
wavetrains show obvious azimuthal variations at each incidence
angle. Figure 18c shows that magnitude of amplitudes stacked
from 0� to 30� incidence angle represents about maximum 7.3%
azimuthal variations between 0� and 90� azimuth angle.

Discussions and conclusions

This study extends the work of Guo et al. (2015) to azimuthal
AVO investigation for poroelastic fractured media. The
modelling scheme incorporated the squirt-flow model into the
anisotropic reflectivitymethod,whichwere both conducted in the
frequency domain. Thus, the scheme appropriately considered
dispersion and attenuation predicted by the poroelastic model in
azimuthal AVO modelling. Moreover, the reflecting model was
regarded as a layered unit which was more realistic than the
conventional interface model. Hence, dynamic information of
azimuthal reflections, including the contrast in properties across
interfaces, anisotropic propagation and attenuation of waves
within the fractured layer, as well as tuning and interferences,
were both considered in the calculation.

Results indicated that AVO responses from the top of the
fractured unit were dominated by reflection coefficients, showing
azimuthal variations at far offset, consistent with conventional
theory.However, AVO responses from the base showed complex
azimuthal variations which could be related to anisotropic
propagation and attenuation of transmission waves within the
fractured layer and tuning and interferences for thinner layer
thickness.

For themodel in this study, theAVOof top reflections showed
no azimuthal variations even at far offset for lower fluidmobility,
while AVO of base reflections showed more noticeable and
stronger azimuthal variations at near and moderate offsets for
different fluid mobility. Results also revealed that it would be
practical to investigate wavetrains reflected from the fractured
layer that was regarded as an integrated unit, especially for
thinner layer where reflections from the top and base were
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indistinguishable. In addition, near-offset stacked data for the
integrated wavetrains showed detectable azimuthal variations,
which could offer an initial look on fracture orientations before
further sophisticated AVO analysis.

Finally, current results revealed that it might be too ambitious
to quantify fluid flow of a poroelastic fractured reservoir using
azimuthal variations of AVO responses. Nevertheless, further
studied would investigate the effects of density and fluid
saturation of fractures as well as layer thickness on azimuthal
variations of AVO responses.
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