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ABSTRACT 

Context. Computer-based crop simulation models are important tools for agricultural research and 
management. APSIM (Agricultural Production Systems sIMulator) is commonly used around the 
world but has not been widely validated in North America. Aims. The objective of this work 
was to evaluate the reliability of APSIM for simulating wheat production in California, with the 
aim of providing guidance for future field research aimed at model calibration and validation. 
Methods. Environmental and management data from state-wide wheat variety trials of common 
wheat (Triticum aestivum L.) were used to parameterise the APSIM-Wheat module (ver. 7.10 
r4220). Simulated yield and protein data were compared with observed field trial results to test 
the reliability of APSIM simulations. Key results. The most reliable simulation of grain yield had 
a root-mean-square error of 1040 kg/ha and normalised root-mean-square error of 16% relative to 
actual field data. Preliminary calibration of the model for Californian wheat varieties did not improve 
simulation accuracy or precision. Conclusions. The accuracy or precision of the simulations was 
comparable to that of other tests of the APSIM-Wheat module in environments where it has not 
been previously calibrated but was considered too low to be reliable. The lack of reliability was due 
to the poor representation of local Californian wheat genotypes by existing APSIM cultivars, as well 
as possible lack of precision and accuracy of field data. Implications. APSIM could be a valuable tool 
for wheat research and management in California; however, further research is needed to generate 
suitable field data for model calibration and validation. 

Keywords: abiotic stress, agronomy, breeding, cereals, cropping systems, farming systems, 
mediterranean environments. 

Introduction 

Computer-based crop simulation models are well-established tools for agricultural research 
and management and are becoming increasingly important for improving agricultural 
productivity and addressing challenges such as climate change (Reardon-Smith et al. 
2015; Robertson et al. 2015; Ahmed et al. 2016; Muller and Martre 2019; Keating 2020). 
They permit the exploration of complex bio-physical processes, which can at times be 
difficult, time-consuming or expensive to study in the field (Pasquel et al. 2022). One of 
the more widely used of these models is the Agricultural Production Systems sIMulator 
(APSIM), developed by the Agricultural Production Systems Research Unit, Toowoomba, 
Queensland, Australia. APSIM has been successfully applied to a range of common crop 
species and complex agricultural systems around the world (Keating et al. 2003; 
Holzworth et al. 2014, 2018). 

California, USA, is one of the world’s most commercially valuable agricultural regions 
(USDA NASS 2020), being a leading generator of farm cash receipts for several decades for 
products including vegetables, nuts, fruits, and small grains, totalling US$50 billion in 2021 
(CDFA 2022). The dominant grain crop in California is wheat (Jackson et al. 2006; CDFA 
2022); it plays an important role in the agricultural systems of the region as one of the few 
crops adapted to cool-season and predominantly rainfed production (Jackson et al. 2006). 
The region has recently experienced drought events that are attributed in part to climate 
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change (Williams et al. 2022). Climate change is likely to lead 
to increasing temperatures and decreasing rainfall in the 
region, negatively impacting irrigated perennial and summer 
crops (Pathak et al. 2018). In addition, the 2014 Sustainable 
Groundwater Management Act has also directly reduced 
irrigation availability (Harter 2020). The winter rotational 
niche, when crops can be grown using rainfall and during times 
of lower evapotranspiration, could therefore become increas-
ingly important for the viability of agribusinesses in California. 

APSIM has potential for multiple practical applications for 
the Californian wheat industry, including identification 
of optimal strategies for irrigation and nitrogen fertility 
management (Asseng et al. 2001; Peake et al. 2014; Lawes 
et al. 2019; Zhao et al. 2020); optimisation of crop rotations 
(Yunusa et al. 2004; Kotir et al. 2020); informing plant 
breeding objectives (Chenu et al. 2018; Hammer et al. 2020; 
Ramirez-Villegas et al. 2020); in-season decision support for 
growers (Hochman et al. 2009a); and better understanding 
the impacts of climate change and identifying mitigation 
strategies (Zheng et al. 2012; Ahmed et al. 2016; Ramirez-
Villegas et al. 2020; Ye et al. 2020). A recent assessment of 
the general performance of the APSIM-Wheat model found 
that it successfully predicted crop responses to a diverse 
range of environmental conditions and management practices 
(Brown et al. 2018). There has been recent testing and 
validation of APSIM for simulation of the growth and water 
use of crops including maize, soybean and canola in North 
America (Archontoulis et al. 2014a, 2014b; George and 
Kaffka 2017; George et al. 2018; Balboa et al. 2019). APSIM 
has been used to simulate wheat production for both research 
and commercial purposes in regions of Australia that are 
climatically comparable to California (Asseng et al. 1998; 
Farré et al. 2002; Hochman et al. 2009b). However, published 
work testing the accuracy or precision of the model for simu-
lating wheat production in the western United States is scarce. 

The application of a crop model to new genotypes and 
environments requires formal model calibration and valida-
tion. In the case of the APSIM-Wheat module, this necessitates 
relatively ‘high-resolution’ field data for parameters including 
the phenological response of local genotypes to thermal time, 
sensitivity to vernalisation and phenology, canopy development 
and senescence, yield and biomass accumulation over time, 
and crop response to water and nitrogen (Zheng et al. 2015; 
Brown et al. 2018). Such data are generally obtained through 
dedicated field experiments, and are either not routinely 
collected for wheat in California (Dubcovsky 2020), or are 
not available across a sufficient number of environments to 
allow for model calibration and validation. A lack of suitable 
field data often acts as a barrier to the development and use of 
crop models (Zhao et al. 2019). 

The Small Grains Program of the University of California 
(UC), Davis, conducts annual state-wide multi-environment 
field trials and agronomic studies of wheat (George et al. 
2017; Nelsen et al. 2018, 2019). This work generates informa-
tion regarding the performance of local wheat genotypes, 

along with management and environmental information, 
across multiple, diverse sites and years throughout California. 
These data are not collected for crop model testing, and 
therefore do not fully comprise the type of information 
needed for calibrating and validating APSIM. However, 
this study utilises the extensive, multi-environment dataset 
opportunistically to evaluate the performance of the APSIM-
Wheat model in California. Our objective was to test the 
accuracy and precision of the current APSIM release to 
inform future field research efforts aimed at the validation 
and calibration of the model for California. 

Materials and methods 

Field data 
Both public and internal data including grain yield, grain 
protein and phenology for common wheat (Triticum aestivum 
L.) were obtained from the state-wide genotype trial results of 
the UC Small Grains Program, USA (George et al. 2017; Nelsen 
et al. 2018, 2019). These comprised 12 field locations in the 
main cereal production regions of California, conducted over 
three winter seasons from 2016–17 to 2018–19 (Fig. 1, Table 1). 
In total, 34 environments (location-by-management-by-year 
combinations) were sampled. The field locations fall between 
latitudes 33°N and 42°N, a north–south distance of ~800 km. 
Two locations in the dataset were identified where field yields 
were considered unlikely in view of the reported environ-
mental and management conditions for the locations as 
described below. Estimates of the water-limited yield potential, 
using Sadras (2020), suggested the reported yield at Tulare in 
2017 was too high given the reported growing-season rainfall 
and starting soil water. The yields at the low-nitrogen managed-
stress Fresno 2018 site were also considered too high 
considering the reported nitrogen fertilisation and residual 
soil nitrogen. Owing to the uncertainty around the reliability 
of reported environmental and management variables at these 
locations, they were removed from the simulation. 

Environmental and management details are summarised in 
Tables 1, 2 and 3. Additional trial methodology and field 
management details are summarised by Nelsen et al. (2019) 
and George and Lundy (2019). A range of management 
practices were used across the field sites, including low-input 
dryland production, with low growing-season rainfall, to 
high-input and fully irrigated production. At the Davis and 
Fresno locations, managed-stress trials were also conducted 
adjacent to conventionally managed trials with the same 
wheat genotypes. The managed-stress trials consisted of 
either restricted irrigation or no nitrogen fertilisation. 

Soil types at the field locations were predominantly loams, 
with relatively undifferentiated profiles to a depth of at least 
1 m  (California Soil Resources Lab 2020). Physical and 
chemical information for the soils at the field locations was 
obtained from soil samples taken during the establishment 
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Fig. 1. Locations used as a source of field data to test the performance of the APSIM-Wheat 
module in California (George et al. 2017; Nelsen et al. 2018, 2019). 

of field sites and the previous work of George and Kaffka 
(2017). Additional soil information was obtained from the 
California Soil Resources Lab (2020). Representative starting 
soil-water data were obtained from soil sampling and 
reported field measurements (George et al. 2017; Nelsen 
et al. 2018, 2019). The plant-available soil-water content was 
estimated by using this information and the crop and soil 
lower limits. In most locations, starting soil-water content 
was small relative to rainfall and irrigation. 

Weather data were obtained from the California Irrigation 
Management Information System (CIMIS) weather station 
network, using the nearest representative station to each 
location (CIMIS 2020). The locations represent a range of 
climate types (Mediterranean to desert) (Peel et al. 2007). 
Growing-season rainfall was estimated from sowing to 1 July 
of the following year. Growing-season rainfall varied from 0 
to 800 mm. Growing degree-days were estimated with daily 
average temperature, using base 0°C. 

Twenty commonly grown wheat genotypes were tested 
across all three growing seasons (Table 4); however, not all 
genotypes survived to harvest in all environments. The 
dataset comprised a range of maturity types and yield 
potentials, with field yields ranging from 22 to 11 700 kg/ha. 

At the Davis location in the 2016–17 and 2017–18 seasons, 
phenological observations were taken of the genotypes SY 
Cal Rojo (UC1478) and SY Blanca Grande 515 (UC1657). 
Commencing at early tillering, observations were taken at 
approximately ten-day intervals from plots of both the 
conventional and managed-stress trials. In the 2017–18 
season, observations of heading and anthesis were also 
taken at approximately weekly intervals from all genotypes 
at the Davis field location. Cumulative thermal time 
(degree-days) spent in individual phenological stages was 
estimated for SY Cal Rojo (UC1478) and SY Blanca Grande 
515 (UC1657) at the Davis location in the 2016–17 and 
2017–18 seasons. 

APSIM procedures 
Wheat production was simulated using the unmodified APSIM-
Wheat module (ver. 7.10 r4220) (Holzworth et al. 2014). 
Model parameterisation followed the methods for canola in 
California, previously described by George and Kaffka 
(2017), using data for the sites presented in Tables 1, 2 and 3. 
The field data, and previous work of George and Kaffka 
(2017), were used to parameterise the APSIM soil module to 
reflect the properties of the soil at the test locations. Sites were 
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Table 1. Details of locations, sowing dates, and soil types of field sites 
used in this study (Nelsen et al. 2019). 

grain protein at harvest were simulated for all environments 

Site Season Lat. (°) Long. (°) Sowing date Soil type 

Colusa 2016–17 39.04 −121.84 10 Nov. 2016 Loam 

Davis 2016–17 38.52 −121.77 15 Nov. 2016 Loam 

Davis (ln) 2016–17 38.52 −121.77 15 Nov. 2016 Loam 

Delta 2016–17 38.15 −121.53 18 Nov. 2016 Clay loam 

Fresno 2016–17 36.34 −120.12 1 Dec. 2016 Clay loam 

Fresno (ln) 2016–17 36.34 −120.12 1 Dec. 2016 Clay loam 

Fresno (lw) 2016–17 36.34 −120.12 1 Dec. 2016 Clay loam 

Imperial 2016–17 32.81 −115.45 9 Dec. 2016 Silty clay 

Kern 2016–17 35.38 −119.33 21 Nov. 2016 Sandy loam 

Solano 2016–17 38.14 −121.74 16 Nov. 2016 Clay 

Tulare 2016–17 35.81 −119.05 29 Nov. 2016 Clay 

Colusa 2017–18 38.93 −121.84 22 Nov. 2017 Loam 

Davis 2017–18 38.54 −121.78 21 Nov. 2017 Loam 

Davis (ln) 2017–18 38.54 −121.78 29 Nov. 2017 Loam 

Davis (lw) 2017–18 38.54 −121.78 21 Nov. 2017 Loam 

Delta 2017–18 38.13 −121.53 18 Nov. 2017 Clay loam 

Fresno 2017–18 36.34 −120.11 29 Nov. 2017 Clay loam 

Fresno (ln) 2017–18 36.34 −120.11 1 Dec. 2017 Clay loam 

Fresno (lw) 2017–18 36.34 −120.11 29 Nov. 2017 Clay loam 

Imperial 2017–18 32.81 −115.44 13 Dec. 2017 Silty clay 

Kern 2017–18 35.37 −119.33 28 Nov. 2017 Sandy loam 

Kings 2017–18 35.99 −119.59 5 Dec. 2017 Clay 

Solano 2017–18 38.15 −121.81 21 Nov. 2017 Clay 

Tehama 2017–18 39.88 −122.36 15 Dec. 2017 Loam 

Tulare 2017–18 35.82 −119.04 28 Nov. 2017 Clay 

Colusa 2018–19 39.03 −121.84 26 Nov. 2018 Loam 

Davis 2018–19 38.53 −121.77 13 Dec. 2018 Loam 

Davis (ln) 2018–19 38.53 −121.77 13 Dec. 2018 Loam 

Delta 2018–19 38.19 −121.49 14 Nov. 2018 Silt loam 

Fresno 2018–19 36.34 −120.08 12 Dec. 2018 Clay loam 

Kern 2018–19 35.52 −119.49 20 Nov. 2018 Sandy loam 

Merced 2018–19 37.14 −120.75 19 Nov. 2018 Clay loam 

Yolo 2 2018–19 38.8 −122.05 27 Nov. 2018 Silty clay loam 

ln, low-nitrogen managed-stress trial; lw, low-irrigation managed-stress trial. 

all sown on a fixed date according to the reported sowing date 
for the location in Table 1, with sowing parameters matching 
those described by George and Lundy (2019). Locations 
were fertilised and irrigated according to the reported field 
management in Tables 2 and 3. The APSIM Climate Control 
module was used to specify an atmospheric carbon dioxide 
content of 410 ppm, representing the approximate atmospheric 
carbon dioxide content for the 2016–17, 2017–18 and 
2018–19 period (Blunden and Boyer 2021). To compare field 
observations with APSIM predictions, grain production and 

using cultivars that represent all unique combinations of 
cultivar parameters in the APSIM-Wheat module. The pheno-
logical development of all cultivars was simulated on a daily 
basis for the 2016–17 and 2017–18 seasons at the Davis 
location for comparisons with field observations of phenology 
taken at this location during these growing seasons. 

Genetic parameters used to simulate the cultivars in the 
APSIM-Wheat model referred to in this work, and a descrip-
tion of their meaning, are presented in Tables 5 and 6. For 
additional information regarding model parameters, please 
refer to the documentation for APSIM-Wheat Module (ver. 
7.10) (Zheng et al. 2015). 

Data management and analysis 
Data management and analyses were performed using the R 
software (v3.6.2) (R Core Team 2020). The accuracy of 
APSIM simulations for simulating grain yield and protein 
content was assessed by individually comparing the yields 
predicted by APSIM cultivars with the reported yield of 
wheat genotypes tested in the state-wide trials. The nature 
of the linear relationship between the simulated and field 
data was assessed using the root-mean-square error (RMSE), 
the coefficient of determination (R2), and the slope and 
intercept of the linear relationship (Ahmed et al. 2016; Brown 
et al. 2018; Wallach et al. 2019). For comparison with 
published literature, the RMSE was also normalised (nRMSE) 
using the data range method of the hydroGOF library in R 
(Zambrano-Bigiarini 2020). 

Management and environmental variables were unique to 
individual locations, so their impact on model output was 
explored by comparing the difference between simulated 
and observed yields at the location level with management 
and environmental variables across locations. The relative 
importance of individual APSIM-Wheat module genetic 
parameters (specified in Table 5) for the performance of 
the simulation was assessed by using a classification and 
regression tree from the rpart library in R (Therneau and 
Atkinson 2019), and by stepwise linear regression, imple-
mented using the olsrr library in R (Hebbali 2020). For 
classification and regression tree (CART) analysis, genetic 
parameters for individual APSIM cultivars were used as 
predictor variables of the RMSE between the simulated and 
actual yield and protein data across all environments. A 
grid search approach was used to determine optimal model 
parameter settings for the CART analysis that minimised the 
estimates of cross-validated prediction error. Stepwise linear 
regression was performed assuming genetic parameters were 
numeric variables. Given differences in units, the data were 
scaled and centred. The best model from the stepwise linear 
regression was selected based on the Akaike Information 
Criterion (AIC). The stability of regression estimates was 
assessed using variance inflation factors, which measure the 
inflation in the variances of the parameter estimates due to 
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Table 2. Nitrogen (N) fertility management of field sites, adapted from George et al. (2017), Nelsen et al. (2018, 2019) for use in parameterisation of APSIM. 

Initial soil N 

<50 cm depth (μg/g) 

Sowing N rate Total N rate Sowing N 
type

Second application Third application Fourth application 

Environment (kg N/ha) Date Rate (kg N/ha) Type Date Rate (kg N/ha) Type Date Rate (kg N/ha) Type 

Colusa 2016–17 35 140 175 NH4NO3 25 Feb. 35 NH4NO3 

Colusa 2017–18 24 70 130 NH4 28 Feb. 60 Urea 

Colusa 2018–19 89 65 120 NH4 31 Jan. 55 Urea 

Davis 2016–17 10 55 225 Urea 4 Feb. 170 Urea 

Davis 2017–18 5 55 220 Urea 20 Feb. 110 NH4SO4 5 Apr. 55 Urea 

Davis 2018–19 26 30 195 Urea 22 Feb. 110 Urea 19 Apr. 55 Urea 

Davis (ln) 2016–17 10 0 0 

Davis (ln) 2017–18 5 0 

Davis (ln) 2018–19 26 0 

Davis (lw) 2017–18 5 55 220 Urea 20 Feb. 110 NH4SO4 5 Apr. 55 Urea 

Delta 2016–17 12.5 55 55 NH4NO3 

Delta 2017–18 21 140 140 NH4NO3/urea 

Delta 2018–19 19.5 0 

Fresno 2016–17 4 55 225 Urea 15 Feb. 170 Urea 

Fresno 2017–18 11 75 26 Feb. 50 Urea 5 Apr. 25 Urea 

Fresno 2018–19 13 165 25 Feb. 110 Urea 15 Apr. 55 Urea 

Fresno (ln) 2016–17 0.5 0 

Fresno (ln) 2017–18 11 0 

Fresno (lw) 2016–17 0.5 55 165 Urea 15 Feb. 110 Urea 

Fresno (lw) 2017–18 11 50 20 Mar. 50 Urea 

Imperial 2016–17 30 55 280 Urea 31 Jan. 75 Urea 1 Mar. 75 Urea 30 Mar. 75 Urea 

Imperial 2017–18 30 55 275 Urea 19 Jan. 110 NH4 13 Feb. 55 NH4 7 Mar. 55 NH4 

Kern 2016–17 12 85 140 NH4NO3/urea 14 Mar. 55 NH4NO3/urea 

Kern 2017–18 5 120 280 NH4NO3/urea 21 Feb. 160 Urea 

Kern 2018–19 31 120 280 NH4NO3/urea 21 Feb. 160 Urea 

Kings 2017–18 15 95 220 NH4 21 Jan. 35 NH4 21 Feb. 55 NH4NO3/urea 21 Mar. 35 NH4 

Merced 2018–19 110 10 10 Urea 

Solano 2016–17 1.5 55 190 Urea 26 Jan. 135 Urea 

Solano 2017–18 1.5 55 55 NH4 

Tehama 2017–18 3 55 165 Urea 22 Feb. 110 Urea 

Tulare 2016–17 5 10 10 NH4 

Tulare 2017–18 5 0 

Yolo 2 2018–19 12 30 105 NH4 9 Feb. 65 NH4NO3 25 Apr. 10 NH4 

ln, low-nitrogen managed-stress trial; lw, low-water managed-stress trial. 
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Table 3. Starting soil-water content (SWC), growing-season rainfall (GSR), cumulative growing degree-days (GDD), and irrigation management of field sites, adapted from George et al. 
(2017), Nelsen et al. (2018, 2019) for use in parameterisation of APSIM. 

Environment Starting 
SWC (mm) 

CIMIS GSR Irrigation GDD First irrigation Second irrigation Third irrigation Fourth irrigation Fifth irrigation Sixth irrigation 

(mm) Timing Amount (mm) Timing Amount (mm) Timing Amount (mm) Timing Amount (mm) Timing Amount (mm) Timing Amount (mm) 

Colusa 2016–17 0 Davis 726 Rainfed 2240 

Colusa 2017–18 180 Davis 228 Rainfed 2310 

Colusa 2018–19 0 Davis 643 Rainfed 2030 

Davis 2016–17 50 Davis 726 Rainfed 2240 

Davis 2017–18 0 Davis 228 405 2310 14 Dec. 25.4 21 Feb. 152 20 Apr. 228 

Davis 2018–19 15 Davis 643 64 2030 22 Apr. 63.5 

Davis (ln) 2016–17 15 Davis 726 Rainfed 2240 

Davis (ln) 2017–18 10 Davis 228 405 2310 14 Dec. 25.4 21 Feb. 152 20 Apr. 228 

Davis (ln) 2018–19 20 Davis 643 64 2030 22 Apr. 63.5 

Davis (lw) 2017–18 0 Davis 228 127 2310 14 Dec. 25.4 21 Feb. 102 

Delta 2016–17 700A Staten 805 Rainfed 2300 

Delta 2017–18 700A Staten 229 Rainfed 2370 

Delta 2018–19 0 Staten 570 Rainfed 2310 

Fresno 2016–17 260 FivePoints 179 533 2290 9 Dec. 88.9 16 Feb. 88.9 14 Mar. 177.8 26 Apr. 177.8 

Fresno 2017–18 20 FivePoints 100 244 2380 6 Dec. 12 7 Dec. 38 14 Dec. 17 20 Feb. 93 10 Apr. 84 

Fresno 2018–19 0 FivePoints 207 371 2190 13 Dec. 25.4 21 Dec. 19.05 8 Jan. 19.05 28 Feb. 12.7 25 Mar. 172.72 16 Apr. 121.92 

Fresno (ln) 2016–17 270 FivePoints 179 533 2290 9 Dec. 88.9 16 Feb. 88.9 14 Mar. 177.8 26 Apr. 177.8 

Fresno (ln) 2017–18 0 FivePoints 100 237 2380 6 Dec. 8 7 Dec. 35 14 Dec. 17 20 Feb. 93 10 Apr. 84 

Fresno (lw) 2016–17 210 FivePoints 179 320 2290 9 Dec. 25.4 16 Feb. 147.32 13 Apr. 147.32 

Fresno (lw) 2017–18 10 FivePoints 100 153 2380 6 Dec. 8 7 Dec. 35 14 Dec. 17 20 Feb. 93 

Imperial 2016–17 20 Meloland 32 715 2980 15 Dec. 143 31 Jan. 143 1 Mar. 143 30 Mar. 143 4 Apr. 143 

Imperial 2017–18 165 Meloland 0 938 2960 14 Dec. 178 19 Jan. 76 13 Feb. 178 7 Mar. 100 27 Mar. 178 13 Apr. 228 

Kern 2016–17 150 Shafter 149 334 2400 1 Dec. 167 14 Mar. 167 21 Apr. 167 

Kern 2017–18 0 Shafter 94 608 2450 28 Nov. 152 1 Jan. 152 1 Mar. 152 21 Apr. 152 

Kern 2018–19 80 Shafter 188 457 2430 1 Oct. 152.4 25 Mar. 152.4 15 Apr. 152.4 

Kings 2017–18 0 Shafter 41 452 2370 15 Dec. 100 21 Jan. 152 21 Feb. 100 21 Mar. 100 

Merced 2018–19 65 Denair II 359 178 2260 15 Dec. 88.9 30 Dec. 88.9 

CIMIS Station indicates the name of the nearest representative weather station (CIMIS 2020). 
ln, low-nitrogen managed-stress trial; lw, low-water managed-stress trial. 
AThis location had an organic soil type and was capable of high water-holding capacity. 
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Table 4. Commercial wheat cultivars grown between 2017 and 2019 in 
the University of California small grain trials (George et al. 2017; Nelsen 
et al. 2018, 2019), and the unique code assigned to each cultivar by the 
University of California, Davis (UC code). 

Cultivar UC code 

Yecora Rojo 112 

SY Cal Rojo 1478 

UC Lassik 1495 

SY Redwing 1521 

SY Blanca Grande 515 1657 

SY Summit 515 1658 

Bag New Dirkwin 1667 

UC Patwin 515 1680 

LCS Atomo 1723 

WB Joaquin Oro 1728 

WB 9229 1730 

WB Patron 1731 

UC Patwin 515 HP 1743 

UC Yurok 1745 

WB 9904 1751 

Assl Tam 204 1778 

UC Central Red 1817 

SY Sienna 1835 

WB 9350 1842 

WB 9433 1847 

collinearities that exist among the predictors (Hebbali 2020). 
The regression diagnostics of initial stepwise linear regression 
models found that node senescence on the main stem 
exhibited multiple collinearities with other predictors, as 
well as residual-leverage issues, and it was therefore removed 
from the stepwise regression analysis. Initial analyses also 
found that interactions between parameters could not be 
included in the regression model owing to collinearities and 
model sparsity. Regression assumptions of the linear fits were 
visually assessed. The process described above was also 

applied to the coefficient of determination; it did not lead 
to different conclusions from the RMSE and is therefore not 
reported. 

Model calibration 
Field data needed for comprehensive model calibration and 
validation were not available. However, using findings from 
the analyses described above, preliminary cultivar parameter-
isation was performed. The parameter file for wheat was 
modified to match the thermal-time values observed for SY 
Cal Rojo (1478) and SY Blanca Grande 515 (1657) reported 
in Table 6. This was done for the base cultivar as well as the 
New Zealand base cultivar, which generated some of the more 
reliable simulations and these are described in the Results. 

Results 

Performance of the APSIM-Wheat model for 
simulation of yield and protein in California 
The accuracy and precision of the existing APSIM-Wheat 
module for predicting grain yield and protein varied consid-
erably between unique combinations of APSIM-Wheat 
cultivars and field genotypes (Fig. 2). For grain yield, across 
all pair-wise comparisons, the relationships observed for 
RMSE ranged from 1040 to 4900 kg/ha and nRMSE from 
16% to 68%. The RMSE of protein varied from 1.4% to 
5.1% and the nRMSE varied from 17% to 74%. 

In terms of grain yield, the best linear relationships 
between the simulated and field data for SY Cal Rojo 
(UC1478) and SY Blanca Grande 515 (UC1657) are presented 
in Fig. 3a, b. In both cases, the nRMSE was >20%, with 
multiple outliers, and the linear fit over-predicted lower 
yielding environments and under-predicted high-yielding 
environments. Across all pairwise combinations of APSIM 
cultivars and field genotypes, WB Joaquin Oro (UC1728) 
had one of the lowest values of RMSE for yield (Fig. 3c). 
There were few apparent outliers, and the fit was close to 
1:1, despite over-prediction in lower yielding environments. 
The genotype LCS Atomo (UC1723) had the highest yields 

Table 5. Genetic parameters in the APSIM-Wheat model referred to in this paper and a description of their meaning. 

Genetic parameter Description APSIM cultivars UC Davis 

Base Gatton Hartog Gregory V2_P2 

Grains_per_gram_stem Kernel number per stem weight at the beginning of grainfill (no./g) 25 35 28 

Max_grain_size Maximum grain size (g) 0.041 0.047 0.047 

Node_sen_rate Rate of node senescence on the main stem. (degree-days/node) 60 120 120 

Photop_sens Sensitivity to photoperiod (0, lowest; 5, highest) 3 3.5 3.2 2 3.5 

Vern_sens Vernalisation sensitivity (0, lowest; 5, highest) 1.5 2.5 2.7 2 1.7 

Parameter values for the APSIM base cultivar are provided, along with parameter values for the APSIM cultivars referred to in the Results. Parameter values that vary 
from the base cultivar are indicated. V2_P2 is derived from the APSIM New Zealand base cultivar, which has a reduced rate of senescence following flag leaf and a 
reduced rate of senescence during water stress. . UC Davis - indicates the preliminary cultivar parametrization for Californian varieties based on field data. Information in 
the table is adapted from Zheng et al. (2015). 
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Table 6. Thermal time genetic parameters in the APSIM-Wheat model referred to in this paper and a description of their meaning. 

Genetic parameter Description (degree-days) Zadoks APSIM cultivar (degree-days) Field observation 
growth stage (degree-days) 

Base Gatton Hartog Gregory V2_P2 Davis 2017 Davis 2018 Av. 

tt_end_of_juvenile Thermal time from sowing to end of juvenile 0–19 400 620 750 685 

tt_floral_initiation Thermal time from floral initiation to flowering 20–59 555 700 640 670 

tt_flowering Thermal time for anthesis phase 60–69 120 250 240 245 

tt_start_grain_fill Thermal time from beginning to end of grainfill 70–89 545 650 350 520 435 

tt_end_grain_fill Thermal time from end of grainfill to maturity 90–99 35 100 NA 100 

Parameter values for the APSIM base cultivar are provided, along with parameter values for the APSIM cultivars referred to in the Results. Parameter values that vary 
from the base cultivar are indicated. V2_P2 is derived from the APSIM New Zealand base cultivar, which has a reduced rate of senescence following flag leaf and a 
reduced rate of senescence during water stress. Adapted from Zheng et al. (2015). Cumulative growing degree-days spent in each phenological stage estimated from field 
observations of SY Cal Rojo (1478) and SY Blanca Grande 515 (1657) growing at Davis in 2017 and 2018; NA, not available. Zadoks growth stages as per Zadoks et al. (1974). 

Fig. 2. Distribution of root-mean-square-errors (RMSE) between all combinations of APSIM-Wheat cultivars and field genotypes tested in 
the analysis for (a) grain yield and (b) grain protein. Dashed line shows the mean value. 

of all genotypes tested in the multi-environment trials and was 
therefore specifically examined. The best model fit for this 
genotype was relatively poor (Fig. 3d). The relationships 
between simulated and field data for grain protein content 
were considered poor by all metrics, the best fit being 
r2 = 0.35, and are not presented. 

Performance of the APSIM-Wheat module for 
simulation of phenology 
Figs 4 and 5 show the relationships between the observed field 
phenology of SY Cal Rojo (UC1478) and SY Blanca Grande 
515 (UC1657), respectively, at the Davis location, and APSIM 
model predictions of phenology using the cultivars that gave 
the smallest RMSE of prediction for yield (as shown in Fig. 3). 

In all environments, the predicted time to all phenological 
stages between tillering and anthesis was slightly shorter 
than observed in the field, and was longer for late anthesis, 
early grain development, and grain maturation. The pheno-
logical data for WB Joaquin Oro (UC1728) and LCS Atomo 
(UC1723) showed a similar pattern but were available only 
for the Davis location in a single season, and at a lower 
temporal resolution, and are therefore not presented. 

Importance of management, environmental, and 
APSIM-Wheat parameters to simulation reliability 
Water and nitrogen status of the locations was not strongly 
associated with model reliability; there was a trend whereby 
the yield at sites with lower water and nitrogen status was 

8 



www.publish.csiro.au/cp Crop & Pasture Science 75 (2024) CP23046 

Fig. 3. Relationships between grain yields from field and simulated genotypes: (a) SY Cal Rojo (UC1478) and APSIM cultivar Gatton Hartog 
(RMSE = 1750, nRMSE = 22%, mean absolute error = 1300, r2 = 0.30, intercept = 2720, slope = 0.48); (b) SY Blanca Grande 515 (UC1657) and 
APSIM cultivar Gregory (RMSE = 1730, nRMSE = 21%, mean absolute error = 1346, r2 = 0.32, intercept = 2512, slope = 0.48); (c) WB Joaquin Oro 
(UC1728) and APSIM cultivar V2_P2 (RMSE = 1129, nRMSE = 17%, mean absolute error = 1000, r2 = 0.59, intercept = 1257, slope = 0.77); (d) LCS 
Atomo (UC1723) and Gatton Hartog (RMSE = 2084, nRMSE = 24%, mean absolute error = 1694, r2 = 0.27, intercept = 2599, slope = 0.44). Solid 
line shows the unconstrained linear relationship and dashed line the 1:1 relationship. Shading indicates the 95% confidence interval. 

under-predicted, although the relationship was weak with 
large residual variation (Figs 6 and 7). CART analyses 
found thermal time to the start of grainfill and number of 
grains per stem weight were strong determinants of model 
reliability, as were vernalisation and photoperiod sensitivity 
(Fig. 8). Stepwise linear regression found all variables to have 
a significant impact on RMSE (Table 7), and similar to the 
CART analysis, thermal time to the start of grainfill and 

number of grains per stem weight had some of the largest 
impacts on model reliability. By contrast, vernalisation and 
photoperiod were not found to be strong predictors. The 
analysis was also performed using the coefficient of determi-
nation as the indicator of model reliability, but the results 
were the same as for RMSE between simulated and actual 
yield and protein data, and the results of the analysis are 
therefore not presented. 
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Fig. 4. Relationship between observed phenology of field genotype SY Cal Rojo (UC1478) and 
predicted phenology of simulated APSIM cultivar Gatton Hartog (filled circles). Field 
observations span a range of phenology stages and are therefore represented as a value range 
(vertical lines). Observations were taken at the Davis location in the 2016–17 and 2017–18 seasons. 
ln, low-nitrogen managed-stress trial; lw, low-water managed-stress trials. 

Observations of thermal time for phenological 
stages and model calibration 
The thermal time spent in phenological stages was similar for 
both SY Cal Rojo (UC1478) and SY Blanca Grande 515 
(UC1657), under conventional and managed-stress conditions 
in individual seasons. Comparison of thermal time spent in 
phenological stages with the equivalent parameter in the APSIM-
Wheat module (Table 6) shows that the thermal times needed 
from sowing to the end of juvenile stage, from floral initiation 

to flowering, and to reach the anthesis stage were greater than 
for the APSIM cultivars, whereas thermal time needed from 
the beginning to end of grainfill was smaller. 

Cultivar calibration 
The APSIM base cultivar and New Zealand base cultivar were 
both reparameterised with thermal-time observations from 
SY Cal Rojo (UC1478) and SY Blanca Grande 515 (UC1657). 
However, like the unparameterised cultivars reported in 
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Fig. 5. Relationship between observed phenology of field genotype SY Blanca Grande 515 (UC1657) 
and predicted phenology of APSIM cultivar Gregory (black circles). Field observations span a range of 
phenology stages and are therefore represented as a value range (vertical lines). Observations were 
taken at the Davis location in the 2016–17 and 2017–18 seasons. ln, low-nitrogen managed-stress trial; 
lw, low-water managed-stress trials. 

Fig. 3, the reparameterised cultivars simulated WB Joaquin 
Oro (UC1728) most reliably (Table 8). The summary 
statistics show that the relationship between predicted and 
observed yield for the parameterised cultivars was worse 
than for the unparameterised model in Fig. 3. 

Discussion 

The performance of APSIM for simulation of wheat 
yield in California 
Computer-based crop simulation models support agricultural 
research and production, but model calibration and testing 

requires field data that are often not available. The objective 
of this work was to use pre-existing data from state-wide field 
trials to evaluate the performance of the APSIM model (v7.10) 
for simulating wheat production in California and to identify 
future research needs for model validation and calibration. 
Given the large yield range and the diversity of environments, 
management methods and latitudes represented in the field 
data, we found that the APSIM model was capable of pre-
dicting relative grain yield responses for at least one field 
genotype. The accuracy of the relationship between predicted 
and reported field yields was comparable to other tests of the 
APSIM-Wheat module in environments where it has not been 
previously calibrated (Asseng et al. 2000; Farré et al. 2002; 
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Fig. 6. Relationship between total water (starting plant-available soil water, seasonal precipitation and irrigation) and the difference 
between predicted and observed yield across all locations and years. Dotted line shows no correlation between predictor and 
response (y = 0). 

Zhao et al. 2014, 2020; Kouadio et al. 2015; Hussain et al. 
2018). 

Despite this, we do not consider the current APSIM-Wheat 
module to be accurate or precise enough to simulate wheat 
production scenarios in this environment, where greater 
specificity is required. The model could not reliably simulate 
high-yielding genotypes and was unable to reliably simulate 
grain protein content. The genotype that was simulated most 
reliably, WB Joaquin Oro (UC1728), was one of the lowest 
yielding of the advanced genotypes included in the California 
field trials, although it achieved some of the highest protein 
values (Nelsen et al. 2018, 2019). The usefulness of the current 
APSIM model for the Californian wheat industry is therefore 
limited, and it will require further calibration and validation. 

Reasons for the performance of APSIM-wheat in 
California 
The poor performance of APSIM for simulating wheat produc-
tion in California is surprising given the environmental 

similarities between the region and southern Australia, where 
the model has been calibrated and extensively validated. The 
uncalibrated APSIM model has also previously been found 
to simulate canola production reliably in the same region 
(George and Kaffka 2017). Inaccuracies in crop simulation 
modelling result from both parameter sensitivity and parame-
terisation error (He et al. 2015). 

Correct calibration of APSIM relies on genetic parameters 
that accurately represent the crop genotype being simulated 
(Ceglar et al. 2011; Zhao et al. 2014; Casadebaig et al. 2016; 
Harris et al. 2016; Meier et al. 2020). As would be expected, 
the performance of APSIM for simulating wheat in California 
was shown to vary considerably depending on the choice of 
APSIM cultivar and the field genotype with which it was 
compared. Analyses of the importance of variables for 
model reliability, observation of field phenology, and initial 
thermal-time estimates all suggest that the parameterisation 
of APSIM cultivars does not currently represent the Californian 
genotypes well. APSIM was able to approximate the phenology 
of field genotypes SY Cal Rojo (UC1478), SY Blanca Grande 
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Fig. 7. Relationship between total nitrogen (starting soil nitrogen and fertilisation) and the difference between predicted and observed 
yield across all locations and years. Dotted line shows no correlation between predictor and response (y = 0). 

515 (UC1657) and LCS Atomo (UC 1723) despite the yields of 
these genotypes not being simulated reliably. By contrast, the 
phenology of WB Joaquin Oro (UC1728) was not simulated as 
reliably, despite the yield of this genotype being simulated 
more reliably than that of other genotypes. 

Several phenology and grain parameters are influencing 
the outcome of the simulation. Parameterisation of the model 
using field observations of thermal time did not lead to 
improvements in yield simulations. Therefore, fieldwork is 
necessary to develop a better understanding of these phenology 
and grain parameters in Californian varieties. Most wheat 
genotypes in California are considered to have a low sensitivity 
to vernalisation and are photoperiod-insensitive (Dubcovsky 
et al. 2006). However, Ottman et al. (2013)  demonstrated that 
consideration of photoperiod alongside thermal time improves 
predictions of flowering date in autumn/fall-planted spring 
wheat cultivars in the south-west of USA. Our findings also 
suggest that photoperiod  and vernalisation sensitivity are impor-
tant  predictors  and should also be investigated in more detail.  

All efforts were made to parameterise the model to 
accurately reflect environmental and management conditions 

at the locations using reported data, but there are reasons to 
believe the management and environmental data for some 
locations are not accurate. The RMSE of prediction of yield 
of WB Joaquin Oro (UC 1728) was also comparable to the 
reported single-site standard deviation from the field data 
for the genotype (George et al. 2017; Nelsen et al. 2018, 
2019), illustrating the sensitivity of yield to environmental 
factors within field sites not being captured by the simulation, 
along with the potential for imprecisions in reported manage-
ment and environmental data at field sites. 

Datasets from state-wide multi-environment trials, 
which are often long-running, geographically extensive, 
agro-environmentally diverse, and publicly available, are 
resources for understanding the impacts of management and 
environmental data on crop production (e.g. George and Lundy 
2019; Barrett-Lennard et al. 2024). Within resourcing 
limits, the California Small Grains Program collects compre-
hensive data regarding crops and test locations (George et al. 
2017; Nelsen et al. 2018, 2019), but our study shows such 
datasets may still have limitations due to insufficient resolution 
or completeness. Well-conducted multi-environment trials are 
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Fig. 8. Classification and regression tree showing the importance of predictor variables to the RMSE of the linear relationship between all 
combinations of APSIM wheat cultivars and field genotypes for grain yield. See Tables 5 and 6 for a description of the values. Boxes along the 
bottom depict RMSE and the proportion of the dataset that falls in each division. 

Table 7. Importance of predictor variables to the RMSE of the linear 
relationship between all combinations of APSIM wheat cultivars and 
field genotypes tested in the analysis for grain yield, based on 
stepwise linear regression. 

Model Beta s.e. t Sign. Lower Upper 

tt_end_of_juvenile −0.338 0.033 −10.184 0 −0.403 −0.273 

Max_grain_size −0.219 0.039 −5.653 0 −0.295 −0.143 

Vern_sens 0.099 0.023 4.28 0 0.054 0.144 

Photop_sens 0.106 0.024 4.439 0 0.059 0.152 

tt_end_grain_fill 0.108 0.025 4.239 0 0.058 0.157 

tt_floral_initiation 0.122 0.029 4.25 0 0.065 0.178 

tt_flowering 0.243 0.036 6.82 0 0.173 0.312 

tt_start_grain_fill 0.39 0.03 13.108 0 0.332 0.448 

Grains_per_gram_stem 0.427 0.038 11.181 0 0.352 0.502 

Node senescence rate had only two unique values and was therefore removed 
from the analysis. 

essential for effective plant breeding and agronomy (Yan 2014) 
and will continue to be routine in many regions of the world. 
Existing multi-environment trials should therefore be leveraged 
to generate data that can be applied to analytics and modelling 
(Keating 2020; Pasquel et al. 2022). This will increase the long-
term value of these programs. 

Table 8. Summary statistics for the relationship between predicted 
and observed grain yield where the APSIM cultivar was parameterised 
with thermal-time values reported in Table 6. 

Parameterised 
APSIM 

Field genotype RMSE nRMSE 2r Intercept Slope 

cultivar 

Base SY Blanca Grande 515 3011 37 0.06 3057 0.39 
(UC1657) 

SY Cal Rojo (UC1478) 2865 35 0.11 2433 0.50 

WB Joaquin Oro 
(UC1728) 

2437 37 0.24 886 0.82 

New Zealand SY Blanca Grande 515 2903 36 0.07 3358 0.41 
base (UC1657) 

SY Cal Rojo (UC1478) 2765 34 0.13 2741 0.52 

WB Joaquin Oro 
(UC1728) 

2338 35 0.28 1041 0.87 

Conclusions and future work: improvement of the 
APSIM-Wheat module for California 
The current APSIM-Wheat module calibration is not able to 
simulate wheat production reliably under Californian condi-
tions. Models such as APSIM will continue to be important 
tools for agricultural research and management (Chenu 
et al. 2017; Keating 2020), and increasing the accuracy and 
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precision of the APSIM-Wheat module for Californian 
conditions will provide a tool to support and complement 
existing agricultural research. Our study finds that data 
needed for model calibration are not currently available. 
Future work should therefore prioritise higher resolution 
observations of phenology, sensitivity to photoperiod and 
vernalisation, and grain characteristics, as well as canopy 
development and senescence (Zheng et al. 2015; Brown 
et al. 2018). Seasonal biomass accumulation and soil-water 
dynamics would also be valuable (Asseng et al. 1998) and 
assist in improving simulations. 
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