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ABSTRACT

Context. Unmanned aerial vehicles (UAV) with red—green—blue (RGB) cameras are increasingly
used as a monitoring tool in farming systems. This is the first field study in mungbean (Vigna
radiata (L.) Wilzcek) using UAV and image analysis across multiple seasons. Aims. This study aims
to validate the use of UAV imagery to assess growth parameters (biomass, leaf area, fractional light
interception and radiation use efficiency) in mungbean across multiple seasons. Methods. Field
experiments were conducted in summer 2018/19 and spring—summer 2019/20 for three sowing
dates. Growth parameters were collected fortnightly to match UAV flights throughout crop
development. Fractional vegetation cover (FVC) and computed vegetation indices: colour index
of vegetation extraction (CIVE), green leaf index (GLI), excess green index (ExG), normalised
green-red difference index (NGRDI) and visible atmospherically resistant index (VARI) were
generated from UAV orthomosaic images. Key results. (1) Mungbean biomass can be accurately
estimated at the pre-flowering stage using RGB imagery acquired with UAVs; (2) a more accurate
relationship between the UAV-based RGB imagery and ground data was observed during pre-
flowering compared to post-flowering stages in mungbean; (3) FVC strongly correlated with biomass
(R? = 0.79) during the pre-flowering stage; NGRDI (R? = 0.86) showed a better ability to directly
predict biomass across the three experiments in the pre-flowering stages. Conclusion. UAV-based
RGB imagery is a promising technology to replace manual light interception measurements and
predict biomass, particularly at earlier growth stages of mungbean. Implication. These findings can
assist researchers in evaluating agronomic strategies and considering the necessary management
practices for different seasonal conditions.

Keywords: biomass, fractional light interception, ground truth data, growth parameters, leaf area,
mungbean physiology, radiation use efficiency, RGB images and vegetation indices.

Introduction

Mungbean (Vigna radiata (L.) Wilczek) is a summer crop grown in sub-tropical farming
systems in Australia as a summer rotation crop. Mungbean has a short crop cycle, is
relatively drought tolerant, improves soil fertility and can be used as a break crop for pest
and disease control. Mungbean is also considered a high-value crop by Australian growers
due to demand from international markets (Noble 2017; Chauhan and Williams 2018).
Crop growth is studied by measuring leaf area, biomass, light interception and ground
cover assessment. Measures of effective leaf area are crucial to estimating plant growth and
biomass, evaluating competition between crops and weeds, and examining water
exchanges in the plant-soil-atmosphere continuum (Khan and Khalil 2010). Biomass and
leaf area monitoring are regarded as necessary in precision agriculture optimising
agronomic practices and identifying pest damage in crops (Ballesteros et al. 2018).
Biomass is an indicator of crop growth strongly associated with solar energy utilisation,
yield and grain quality (Yue et al. 2017). Accurately measuring biomass and leaf area can
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help farmers determine the most efficient use of resources
such as water, fertilisers and pesticides, leading to
improved crop yields and reduced environmental impact.

Biomass is the product of the accumulated solar energy
absorption over time and the average efficiency of transfor-
mation of intercepted energy into new biomass (Monteith
1977). Solar energy interception, or fractional light intercep-
tion, is the light intercepted by the crop canopy. Radiation
(light) levels have a direct impact on crop photosynthesis,
mass accumulation and crop growth (Sinclair and Muchow
1999). The proportion of radiation not intercepted can be
measured by an under-canopy light meter and allows
computation of radiation captured (i.e. difference compared
to incoming radiation) and the canopy radiation use
efficiency (RUE), which is a fundamental parameter of crop
growth response to accumulated radiation (Monteith 1977).

Understanding the dynamics of leaf area, biomass and
fractional light interception is essential for predicting crop
yield under various management systems. By analysing these
parameters, it is possible to identify the impacts of critical
environmental conditions during stages of yield determina-
tion, which can result from different sowing dates from
spring to summer or changes in water availability (Li et al.
2014). Additionally, time of sowing can influence the risk
of exposure to biotic pressure and consequent yield loss
(Sadeghipour 2008). For mungbean in Australia, there are
two recommended sowing periods: summer (typically around
December/January) and spring (September-November). By
carefully considering the optimal sowing date and environ-
mental conditions, farmers can optimise crop growth and
yield relative to the risk of heat events, reduce the risk of
pests and diseases, and increase the overall sustainability of
their farming operations.

Unmanned aerial vehicle (UAV) techniques are considered
a feasible approach to crop monitoring with many benefits,
including greater flexibility, faster data collection and
higher resolution imaging in comparison to traditional
methods such as manual field sampling. Consumer-level
drones equipped with red, green and blue (RGB) cameras
offer many advantages as an affordable remote-sensing tool
for small-scale research projects. These advantages include
quicker data delivery to the users, the ability to fly at low
altitudes, acquisition of high spatial resolution images at
low operational cost and the opportunity for analysing the
data in near real time (Chapman et al. 2014; Gago et al. 2015;
Mahajan and Raj 2016). RGB camera-equipped drones are
demonstrably cost-effective for studying the influence of
abiotic and biotic stresses, analysis of plant growth and
crop senescence (Casadests et al. 2007).

UAVs have been increasingly applied as useful monitoring
tools in crop systems. Researchers have utilised UAV imagery
with RGB cameras to assess crop growth and development
parameters in multiple crops, including wheat (Du and
Noguchi 2017), corn (Garcia-Martinez et al. 2020) and
sugarcane (Du and Noguchi 2017; Lu et al. 2021; Sumesh

et al. 2021). Previous scientific publications have employed
RGB imaging techniques to investigate various growth
parameters of mungbean. For example, Mileva (2017) utilised
both smartphones and UAVs to assess fractional vegetation
cover in the field; and De Silva and Senanayake (2017) used
smartphones to examine water stress. Abud et al. (2022)
analysed seedling growth in a laboratory using only RGB
imagery. Additionally, Rane et al. (2021) conducted research
on biomass prediction under the influence of water stress in
mungbean, utilising near-infrared (NIR) imaging techniques
in a controlled glasshouse environment. These studies were
carried out on a small scale and only within a single
growing season.

Fractional vegetation cover (FVC) is a commonly used
metric to estimate fractional light interception in vegetation.
The FVC metric, which incorporates the impact of both
radiation scattering within a canopy and the transmission
of radiation through the leaves, can be accurately measured
through UAV data (Duan et al. 2017). This parameter is a
crucial metric for monitoring and modelling vegetation
productivity, as well as for predicting final yield estimation
(Jiapaer et al. 2011; Liu et al. 2012; Shafian et al. 2018).
Field surveys and remote-sensing inversion are the two
main methods for determining FVC (Nemani et al. 1996).
FVC can be estimated through the use of remote-sensing
technologies that rely on vegetation index methods, unmixed
pixel models and regression models (Jia et al. 2015). These
methods are commonly utilised for approximating FVC at
large scales, such as for forests or grasslands. Vegetation
indices and FVC have been applied in many studies, for
instance, leaf cover mapping in cereals (Torres-Sanchez et al.
2015) and chlorophyll content (Hunt et al. 2013). These
indices can be applied to assess changes in the fraction of light
intercepted, leaf area index (LAI), biomass and photosynthesis
by separating the spectral information from a living and non-
living structure (Xue and Su 2017). FVC and vegetation
indices are instrumental in proximal sensing, where they can
be characterised for each plot in an experimental research
trial.

This study aims to assess the potential use of UAVs
mounted with affordable RGB cameras to determine crop
growth parameters associated with radiation interception/
utilisation and to predict mungbean biomass. Although there
have been studies utilising UAV-RGB imagery to assess
growth parameters in other crops, such as maize, wheat and
soybean, to our knowledge, there have been limited studies on
mungbean. Three different sowing dates across two seasons of
irrigated field experiments were conducted. The research
team collected data on leaf area, biomass and ground cover
using intensive destructive methods, as well as data on
vegetation indices and FVC using UAV imagery, allowing us
to accurately and efficiently measure crucial indicators of
crop growth and productivity. Additionally, the study also
aimed to determine if the UAV results were comparable to
light interception measurements obtained through traditional
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methods using a ceptometer. As biomass prediction for
mungbean over multiple seasons in the field has not been
widely explored, this may provide a method for determining
paddock variability, early biomass estimation and the impact
of management strategies across seasons.

Materials and methods

Study site and experimental design

Three experiments were conducted at the University of
Queensland, Gatton Campus (27.55°S, 152.34°E), to establish
mungbean crops with variable growth and biomass/yield
dynamics. Weeds, pests and diseases were managed as
required. Experiments were sown in January 2018, October
and November 2019.

Experiment 1 was conducted from 16 January 2018
(sowing date) to 9 April 2018 on a 2-ha plot comprising
five replicates of two mungbean genotypes (Jade-AU and
Satin II). Additionally, a zinc (Zn) fertiliser was applied with
seeds as a starter, at a rate of 20-30 kg/ha. This experiment
was conducted under conditions of high-water availability
with 100 mm of irrigation at sowing, and a further 50 mm
of irrigation after emergence due to a high-temperature
period. No additional water was applied after this as adequate
rainfall of 263 mm occurred. Row spacing was 40 cm with six
rOWS per pass.

Experiments 2 and 3 were respectively conducted from 22
October 2019 (sowing date) to 2 February 2020 and 28
November 2019 (sowing date) to March 2020. Two
mungbean cultivars (Jade-AU and Crystal) were grown in
four replicates under irrigated conditions. A Zn fertiliser
was applied with seeds as a starter, at a rate of 20-30 kg/ha.
Each plot size was 13 m long and 4.35 m wide. A total of
381.4 mm and 333.1 mm of irrigation were applied in
Experiments 2 and 3 across the season. These two experiments
were planted on 50-cm row spacing with eight rows per plot.

Data collection

Meteorological data, including maximum and minimum
temperature, total rainfall, solar radiation and relative humidity,
were obtained from a weather station for Experiment 1. The
weather station was located at the University of Queensland
in Gatton, which was 1 km north of the field experiment. The
data was downloaded through the Bureau of Meteorology
website. For Experiments 2 and 3, similar weather data
were collected from a HOBO® RX3000 logger (HOBOIink®,
Australia) weather station installed within the field trial area.

Four to six biomass harvests were taken in the experiments.
In Experiment 1, four inner rows along a 1-m transect (1.2 m?2)
inside the plot area were sampled from 10 plots (two genotypes,
five replicates). In Experiments 2 and 3, a sampling area of 1 m?
within three inner rows per plot was used to collect data across

the experiments in eight plots (two genotypes and four
replicates). Table 1 presents the dates for manual harvesting
and UAV data collection at different growth stages for
Experiments 1, 2 and 3. Growing degree days (GDD) were
calculated based on the difference between the daily mean
temperature and the base temperature (Arnold 1959), using
a base temperature of 7.5°C (Robertson et al. 2002;
Rachaputi et al. 2015; Chauhan and Williams 2018). When
mungbean plants reached 50% flowering during all three
experiments, the date of flowering was recorded.

The total number of plants and leaf fresh weight of each
sampling plot were recorded. The leaf area of each sample
was obtained from a LI-3100C (LI-COR) leaf area meter.
Subsequently, all leaves and stems were oven-dried for 6 days
in paper bags at 65°C and their dry weights were recorded.
From flowering onwards, leaves and stems, as well as
reproductive organs (flowers, green and black pods), were
split into components, weighed and dried separately. At the
final harvest, pod counts and seed weight per plot were
recorded.

Light interception measurements were collected using an
AccuPAR LP-80 ceptometer (Meter Environment®, USA).
Measurements prior to every biomass harvest in experiment
plots were performed under the full sun between 11:00 hours
and 13:00 hours in six different locations under the canopy
with four measures of incoming radiation above. The
locations were fixed per plot to calculate accumulated light
intercepted as the same canopy structure expanded over time,
corresponding to the biomass and leaf area measurements.

All the UAV images were collected to match with the
ground truth data measurements undertaken in the vegetative
and reproductive stages. Therefore, weekly or fortnightly
flights were launched during the growing seasons at 15 m
altitude in Experiment 1 and 20 m in Experiments 2 and 3
over the field trials. These flights were conducted under
low wind speed conditions and clear sky from 11:00 hours
to 14:00 hours. The UAV platform used to collect images
was a DJI Phantom 4 Pro. This UAV has a 20 Megapixel
RGB camera that captures light in the visible spectrum
(400-700 nm) in red, green and blue wavebands. To ensure
accurate geolocation of the images, at least four ground
control points (GCPs) were placed in the field prior to
capturing the first set of images. The GPS coordinates of these
targets were obtained using a GPS survey kit (Aeropoints
https://www.propelleraero.com/aeropoints/), which allowed
for precise location determination of the trials. The reference
of GCPs ensures accurate geolocation of the images.

Ground truth data pre-processing

Calculation of intercepted radiation
Intercepted radiation (R) is calculated as:

R=IXf,
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Table |I. Ground truth data collection in Experiments |, 2 and 3.
Flight/ UAY date Cumulative Harvesting date Cumulative Stage at
Sampling GDD, UAV GDD, Ground harvest

Experiment | | 21/1112019 492 19/1112019 450 Mid vegetative
(UAY, 15 meters) 2 14/02/2018 516 14/02/2018 516 End juvenile

3 20/02/2018 636 200212018 636 Pre-anthesis

4 9/03/2018 93 12/03/2018 975 Start podding

5 21/03/2018 122 26/03/2018 1204 Mid podding

6 5/04/2018 1368 9/04/2018 1425 End grain filling
Experiment 2 | 2171172019 492 19/11/2019 450 Mid vegetative
(UAV, 20 meters) 2 6/1212019 785 3/12/2019 728 End juvenile

3 10/12/2019 868 17/1212019 1020 Start podding

4 10/01/2020 1444 2/01/2020 1319 Mid podding

5 17/01/2020 1618 15/01/2020 1580 Grain filling

6 28/01/2020 1845 27/01/2020 1825 End grain filling
Experiment 3 | 10/01/2020 855 30/1212019 628 End vegetative
(LA, 2 ez 2 17/01/2020 989 13/01/2020 914 Pod filling

3 28/01/2020 1217 29/01/2020 1239 Mid grain filling

4 14/02/2020 1536 13/02/2020 1516 End grain filling

where I is incident radiation (MJ/m? per day) and f is
fractional interception of incident light (De Costa et al.
1999). Hence, incident solar radiation (MJ/m? per day) from
the Bureau of Meteorology reference station and fractional
light interception obtained from AccuPAR LP-80 Ceptometer
were used to calculate intercepted radiation at each sampling
time.

Calculation of RUE

Using all replicates per genotype and all harvest samples,
RUE was calculated as the average value of the above-
ground biomass and cumulative intercepted radiation from
sowing to anthesis before photosynthetic capacity decreased
during the grain-filling stage (Monteith 1977).

RUE =Total biomass/Cumulative interceped radiation

Calculation of fractional light interception and
radiation extinction coefficient (k)

Using all sampled LAI replicates and light interception
across multiple harvests, the radiation extinction coefficient
(k) calculation was based on the Beer-Lambert Law. Monsi
and Saeki (1953) concluded the formula as below, derived
from Beer and Lamberts’ law:

I'=10 x exp (—k x LAI),

I0-1

f="

f=1-—exp(—k x LAI),

k= —1In(1 - f)/LAL

where I represents the intercepted radiation, I0 is the total
incident light at the top canopy layer, f is the fractional light
interception coefficient, k is a slope of the linear regression
between —In (1—f) and LAI (Steven et al. 1986; Hirose 2005).

Image data pre-processing

RGB image data were processed using the PhenoCopter tool
(https://phenocopter.netlify.app/) and commercial software
Pix4D (https://www.pix4d.com/) to produce orthomosaic
images. We then applied plot segmentation, binary image
classification and extraction of phenotype values: FVC and
vegetation indices per plot for each UAV flight. Although
PhenoCopter is no longer accessible, this pipeline can be
replicated using Pix4D and GIS tools such as QGIS to create
a matrix of plots to extract the data. Image classification is
also available using EasyPCC (https://www.quantitative-
plant.org/software/easypcc) directly (Guo et al. 2017).

Production of orthomosaic images

The set of 80% overlapped images for these three
experiments collected in each flight was imported directly
to the PhenoCopter website to generate an orthomosaic
image. The raw images were stitched together to develop the
orthomosaic images for each flight in different mungbean
growth stages, as shown as an example in Fig. 1a.

Plot segmentation
Mungbean fields were divided into small plots using the
plot segmentation method, which involves drawing vector
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Fig. I.

Orthomosaic image and plot segmentation. (a) Orthomosaic image of mungbean field on

|4 February 2018 in Experiment | (left) and |7 January 2020 in Experiments 2 and 3 (right); (b) plot
segmentation in the field trial for UAV flight during Experiments | (left), 2 and 3 (right).

layers to separate the information from the orthomosaic
images. This was done through the PhenoCopter website to
align the orthomosaic images with the ground truth data
collected per plot during the experiments. The whole field
used for Experiment 1 was divided into 360 (12 x 30 = 360)
plots (Fig. 1b). The total of 60 plots harvested for ground truth
data was matched with UAV data. For Experiments 2 and 3, a
total of 96 (12 x 8 = 96) plots were segmented, as shown in
Fig. 1b, with only 16 plots assessed in Experiments 2 and 3.

Image classification of vegetation and
background

An image classification procedure was undertaken using
PhenoCopter website to differentiate the vegetation material
from non-plant materials, including soil and mungbean
shadows for each flight. Therefore, two distinct training
datasets, one consisting of vegetation and the other non-
plant materials, were generated for each flight to enable the
PhenoCopter software to accurately extract phenotypic
information, including FVC and vegetation indices. This

method can be replicated using the methods of Guo et al.
(2017).

Calculation of FVC

FVC were calculated effectively from an orthomosaic
image with hundreds of three-channel RGB images by
separating and classifying vegetation pixels from soil pixels
and other non-vegetation pixels (Guo et al. 2013; Sharma
et al. 2015) as demonstrated by (Duan et al. 2017). FVC is
the ratio of the vertical projected area of vegetation to the
total ground area (Lin and Qi 2004). Torres-Sanchez et al.
(2014) concluded an expression for high-resolution images
per plot as below:

FVC = (Number of pixels classified as vegetation/

Total number f pixels) x 100

Calculation of vegetation indices
Vegetation indices, including CIVE, GLI, ExG, NGRDI and
VARI, were calculated using the PhenoCopter tools based on

5


www.publish.csiro.au/cp

Y. Xiong et al.

Crop & Pasture Science 75 (2024) CP22335

Table 2. Vegetation index equations.

Name Abbreviation Equation Reference

Colour index of vegetation extraction CIVE 0.441 x Red — 0.881 x Green + 0.385 X Blue + 18.78745 Kataoka et al. (2003)
Excess green index ExG 2 X Green — Red — Blue Woebbecke et al. (1995)
Green leaf index GLI (2 X Green — Red — Blue)/(2 x Green + Red + Blue) Louhaichi et al. (2001)
Normalised green-red difference index NGRDI (Green — Red)/(Green + Red) Gitelson et al. (2002)
Visible atmospherically resistant index VARI (Green — Red)/(Green + Red — Blue) Gitelson et al. (2002)

the equations and references displayed in Table 2. Note that
the PhenoCopter website is no longer functional, but these
indices can be computed using Pix4D directly (as PhenoCopter
used). In these equations, blue is the visible wavelength of
450-495 nm, green is the visible wavelength of 495-570 nm,
and red is the visible wavelength of 625-750 nm (Bruno and
Svoronos 2005). No adjustment was made of the RGB channels
in the images from the Phantom 4 Pro camera, which have a
wider wavelength of response.

Data analysis

Customised Python code scripts (Python ver. 3.10.9) were
used to analyse the UAV and ground truth data. A two-
sample t-test at a 5% significance level was calculated to
compare the performance of the varieties for each experiment
at the observation date. A test for homogeneity of variances
and normality of residues was performed to validate these
analyses. In addition, to validate the use of UAV imagery from
RGB cameras, regression analysis and Pearson correlation
tests were used to compare ground data (biomass, leaf
area and fractional light interception) and UAV imagery
(vegetation indices and FVC) for the three mungbean
cultivars and each sowing period. After preliminary analysis
showed no cultivar and seasonal differences, the data from
three cultivars from three experiments were combined to
represent the mungbean features to analyse the relationship
between UAV imagery and ground data during pre- and
post-flowering stages. The UAV analysis grouped the data into
two different subgroups (pre-flowering and post-flowering)
based on the flowering dates across the three experiments.

For Experiment 1, only three UAV flights (1, 2 and 3) were
used to match with three sets of field sampling from the same
period due to technical issues and data losses of the later three
flights. However, these three early flights were sufficient to
perform the correlation analysis between field data and UAV
imagery and predict biomass at the pre-flowering stage. As a
result, UAV data collected in Flights 1, 2 and 3 in Experiment 1
and Flights 1 and 2 in Experiment 2 (Table 1) was considered
pre-flowering data. UAV data from Flights 5 and 6 in
Experiment 2 and Flights 2, 3 and 4 in Experiment 3 were
considered post-flowering data. Other flights in Experiments 2
and 3 were excluded due to the discrepancy between the field
collection and drone flight dates.

Results

Trial weather data across Experiments 1-3

The relationship between growing degree days (GDD) and the
average maximum and minimum temperatures, as well as
rainfall in mungbean Experiments 1, 2 and 3 are depicted in
Fig. 2a. The average maximum and minimum temperatures
for Experiment 1 were 31.8°C and 17.6°C, respectively. In
Experiment 1, large temperature fluctuations with higher
rainfall were apparent pre-anthesis (690 GDD, 20% flowering)
but were more stable post-anthesis. The highest maximum
daily temperatures and rainfall occurred towards the end of
the vegetative stages.

In Experiment 2, the average minimum and maximum
temperatures were 17.7°C and 35°C, respectively. In
Experiment 3, the average minimum and maximum tempera-
tures were 20°C and 34.37°C, respectively. In Experiment 2,
the highest temperature was observed during the flowering
period, whereas in Experiment 3, it occurred during the early
growth stages. During Experiment 2, higher temperatures
with relatively higher rainfall were seen during the flowering
period (766 GDD, 50% flowering). In Experiment 3, higher
temperatures and lower rainfall were observed in the
period around the flowering (752 GDD, 50% flowering).

In-crop rainfall was relatively low across the three experi-
ments. Total rainfall of 263 mm, 93 mm and 192 mm was
observed in Experiments 1, 2 and 3, respectively. Most of
the in-season rainfall occurred before flowering in Experiment 1
and after flowering in Experiments 2 and 3 (Fig. 2a). Relative
humidity (RH) varied across the seasons and experiments.
Experiment 1 had consistently high RH (49.5-91.5%) across the
season, whereas Experiments 2 and 3 had increasing RH values
as the season progressed (Fig. 2b). The solar radiation (MJ/m?)
among the experiments showed a relatively stable trend with an
average of 19.7 MJ/m?, 24.1 MJ/m? and 21.73 MJ/m? for
Experiments 1, 2 and 3, respectively (Fig. 2b). The average of solar
radiation in Experiment 1 was lower than in Experiments 2 and 3.

Ground truth data

LAI

There were no significant differences (Experiment 1, P =
0.649; Experiment 2, P = 0.178; Experiment 3, P = 0.317)
over time between the varieties used in Experiments 1, 2 and
3. As a result, two varieties were combined to present LAI for
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Fig. 2. Woeather data for Experiments I, 2 and 3. (a) Average maximum and minimum temperature (°C) and rainfall (mm);
(b) average measured relative humidity (%) and solar radiation (M}/m?).

each experiment. For Experiment 1, LAI rapidly increased
until canopy closure (around 619 GDD), then slowly rose and
finally decreased as leaf senescence began. In Experiments 2
and 3, LAI increased to a peak at the pod and grain develop-
ment stage (around 1319 GDD and 1259 GDD, respectively).
During pod development, accelerating leaf senescence increased
biomass partitioning to developing pods, thereby reducing
canopy development. Maximum LAI for the three experiments
were observed at the grain-filling stage as shown in Fig. 3a.

Biomass

Development of biomass (g/m?) throughout the seasons in
Experiments 1, 2 and 3 are shown in Fig. 3b. Overall, there
were no significant differences (Experiment 1, P = 0.859;
Experiment 2, P = 0.169; Experiment 3, P = 0.663) for
cultivars in biomass in three experiments over time. In
Experiments 1 and 3, the average total biomass tended to
increase steadily throughout the entire growing period,
whereas during Experiment 2, the varieties reached a peak
during the filling stage around 1500 GDD.

Fractional light interception

There were no significant differences between cultivars for
fractional light interception in the three experiments
(Experiment 1, P = 0.855; Experiment 2, P = 0.711;
Experiment 3, P = 0.971). Overall, although fractional light
interception throughout the growing season for three mungbean
cultivars varied across the experiments, it consistently
increased throughout the season, reaching a peak during early
to mid-podding (seasonally dependent) and then declined
before crop maturity as leaves senesced (Fig. 3c). In Experiment 1,
the peak of fractional light interception occurred at the early
pod filling stage (1170 GDD) at around 98%. The peak was
around 60% and 80% for Experiments 2 and 3, respectively.

Radiation extinction coefficient (k)

The radiation extinction coefficient for the different
mungbean varieties was computed for each experiment,
using a linear relationship between the —In(1—fractional light
interception) and LAI and forcing this relationship to pass
through 0 (Fig. 4a).
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Fig. 3. Growth parameters: leaf area index, fractional light interception and total biomass for

Experiments |, 2 and 3. (a) Leaf area index (LAl); (b) total biomass (g/m?); (c) fractional light

interception (%).

Statistically significant differences between varieties for
k were only observed in Experiment 3 (P = 0.027). In
Experiment 3, k values of 0.66 and 0.48 (R? = 0.88) were

calculated for Jade-AU and Crystal, respectively