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ABSTRACT

Context. Unmanned aerial vehicles (UAV) with red–green–blue (RGB) cameras are increasingly
used as a monitoring tool in farming systems. This is the first field study in mungbean (Vigna
radiata (L.) Wilzcek) using UAV and image analysis across multiple seasons. Aims. This study aims
to validate the use of UAV imagery to assess growth parameters (biomass, leaf area, fractional light
interception and radiation use efficiency) in mungbean across multiple seasons. Methods. Field
experiments were conducted in summer 2018/19 and spring–summer 2019/20 for three sowing
dates. Growth parameters were collected fortnightly to match UAV flights throughout crop
development. Fractional vegetation cover (FVC) and computed vegetation indices: colour index
of vegetation extraction (CIVE), green leaf index (GLI), excess green index (ExG), normalised
green-red difference index (NGRDI) and visible atmospherically resistant index (VARI) were
generated from UAV orthomosaic images. Key results. (1) Mungbean biomass can be accurately
estimated at the pre-flowering stage using RGB imagery acquired with UAVs; (2) a more accurate
relationship between the UAV-based RGB imagery and ground data was observed during pre-
flowering compared to post-flowering stages in mungbean; (3) FVC strongly correlated with biomass
(R2 = 0.79) during the pre-flowering stage; NGRDI (R2 = 0.86) showed a better ability to directly
predict biomass across the three experiments in the pre-flowering stages.Conclusion. UAV-based
RGB imagery is a promising technology to replace manual light interception measurements and
predict biomass, particularly at earlier growth stages of mungbean. Implication. These findings can
assist researchers in evaluating agronomic strategies and considering the necessary management
practices for different seasonal conditions.

Keywords: biomass, fractional light interception, ground truth data, growth parameters, leaf area,
mungbean physiology, radiation use efficiency, RGB images and vegetation indices.

Introduction

Mungbean (Vigna radiata (L.) Wilczek) is a summer crop grown in sub-tropical farming 
systems in Australia as a summer rotation crop. Mungbean has a short crop cycle, is 
relatively drought tolerant, improves soil fertility and can be used as a break crop for pest 
and disease control. Mungbean is also considered a high-value crop by Australian growers 
due to demand from international markets (Noble 2017; Chauhan and Williams 2018). 

Crop growth is studied by measuring leaf area, biomass, light interception and ground 
cover assessment. Measures of effective leaf area are crucial to estimating plant growth and 
biomass, evaluating competition between crops and weeds, and examining water 
exchanges in the plant–soil–atmosphere continuum (Khan and Khalil 2010). Biomass and 
leaf area monitoring are regarded as necessary in precision agriculture optimising 
agronomic practices and identifying pest damage in crops (Ballesteros et al. 2018). 
Biomass is an indicator of crop growth strongly associated with solar energy utilisation, 
yield and grain quality (Yue et al. 2017). Accurately measuring biomass and leaf area can 
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help farmers determine the most efficient use of resources 
such as water, fertilisers and pesticides, leading to 
improved crop yields and reduced environmental impact. 

Biomass is the product of the accumulated solar energy 
absorption over time and the average efficiency of transfor-
mation of intercepted energy into new biomass (Monteith 
1977). Solar energy interception, or fractional light intercep-
tion, is the light intercepted by the crop canopy. Radiation 
(light) levels have a direct impact on crop photosynthesis, 
mass accumulation and crop growth (Sinclair and Muchow 
1999). The proportion of radiation not intercepted can be 
measured by an under-canopy light meter and allows 
computation of radiation captured (i.e. difference compared 
to incoming radiation) and the canopy radiation use 
efficiency (RUE), which is a fundamental parameter of crop 
growth response to accumulated radiation (Monteith 1977). 

Understanding the dynamics of leaf area, biomass and 
fractional light interception is essential for predicting crop 
yield under various management systems. By analysing these 
parameters, it is possible to identify the impacts of critical 
environmental conditions during stages of yield determina-
tion, which can result from different sowing dates from 
spring to summer or changes in water availability (Li et al. 
2014). Additionally, time of sowing can influence the risk 
of exposure to biotic pressure and consequent yield loss 
(Sadeghipour 2008). For mungbean in Australia, there are 
two recommended sowing periods: summer (typically around 
December/January) and spring (September–November). By 
carefully considering the optimal sowing date and environ-
mental conditions, farmers can optimise crop growth and 
yield relative to the risk of heat events, reduce the risk of 
pests and diseases, and increase the overall sustainability of 
their farming operations. 

Unmanned aerial vehicle (UAV) techniques are considered 
a feasible approach to crop monitoring with many benefits, 
including greater flexibility, faster data collection and 
higher resolution imaging in comparison to traditional 
methods such as manual field sampling. Consumer-level 
drones equipped with red, green and blue (RGB) cameras 
offer many advantages as an affordable remote-sensing tool 
for small-scale research projects. These advantages include 
quicker data delivery to the users, the ability to fly at low 
altitudes, acquisition of high spatial resolution images at 
low operational cost and the opportunity for analysing the 
data in near real time (Chapman et al. 2014; Gago et al. 2015; 
Mahajan and Raj 2016). RGB camera-equipped drones are 
demonstrably cost-effective for studying the influence of 
abiotic and biotic stresses, analysis of plant growth and 
crop senescence (Casadesús et al. 2007). 

UAVs have been increasingly applied as useful monitoring 
tools in crop systems. Researchers have utilised UAV imagery 
with RGB cameras to assess crop growth and development 
parameters in multiple crops, including wheat (Du and 
Noguchi 2017), corn (García-Martínez et al. 2020) and 
sugarcane (Du and Noguchi 2017; Lu et al. 2021; Sumesh 

et al. 2021). Previous scientific publications have employed 
RGB imaging techniques to investigate various growth 
parameters of mungbean. For example, Mileva (2017) utilised 
both smartphones and UAVs to assess fractional vegetation 
cover in the field; and De Silva and Senanayake (2017) used 
smartphones to examine water stress. Abud et al. (2022) 
analysed seedling growth in a laboratory using only RGB 
imagery. Additionally, Rane et al. (2021) conducted research 
on biomass prediction under the influence of water stress in 
mungbean, utilising near-infrared (NIR) imaging techniques 
in a controlled glasshouse environment. These studies were 
carried out on a small scale and only within a single 
growing season. 

Fractional vegetation cover (FVC) is a commonly used 
metric to estimate fractional light interception in vegetation. 
The FVC metric, which incorporates the impact of both 
radiation scattering within a canopy and the transmission 
of radiation through the leaves, can be accurately measured 
through UAV data (Duan et al. 2017). This parameter is a 
crucial metric for monitoring and modelling vegetation 
productivity, as well as for predicting final yield estimation 
(Jiapaer et al. 2011; Liu et al. 2012; Shafian et al. 2018). 
Field surveys and remote-sensing inversion are the two 
main methods for determining FVC (Nemani et al. 1996). 
FVC can be estimated through the use of remote-sensing 
technologies that rely on vegetation index methods, unmixed 
pixel models and regression models (Jia et al. 2015). These 
methods are commonly utilised for approximating FVC at 
large scales, such as for forests or grasslands. Vegetation 
indices and FVC have been applied in many studies, for 
instance, leaf cover mapping in cereals (Torres-Sánchez et al. 
2015) and chlorophyll content (Hunt et al. 2013). These 
indices can be applied to assess changes in the fraction of light 
intercepted, leaf area index (LAI), biomass and photosynthesis 
by separating the spectral information from a living and non-
living structure (Xue and Su 2017). FVC and vegetation 
indices are instrumental in proximal sensing, where they can 
be characterised for each plot in an experimental research 
trial. 

This study aims to assess the potential use of UAVs 
mounted with affordable RGB cameras to determine crop 
growth parameters associated with radiation interception/ 
utilisation and to predict mungbean biomass. Although there 
have been studies utilising UAV-RGB imagery to assess 
growth parameters in other crops, such as maize, wheat and 
soybean, to our knowledge, there have been limited studies on 
mungbean. Three different sowing dates across two seasons of 
irrigated field experiments were conducted. The research 
team collected data on leaf area, biomass and ground cover 
using intensive destructive methods, as well as data on 
vegetation indices and FVC using UAV imagery, allowing us 
to accurately and efficiently measure crucial indicators of 
crop growth and productivity. Additionally, the study also 
aimed to determine if the UAV results were comparable to 
light interception measurements obtained through traditional 
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methods using a ceptometer. As biomass prediction for 
mungbean over multiple seasons in the field has not been 
widely explored, this may provide a method for determining 
paddock variability, early biomass estimation and the impact 
of management strategies across seasons. 

Materials and methods

Study site and experimental design

Three experiments were conducted at the University of 
Queensland, Gatton Campus (27.55°S, 152.34°E), to establish 
mungbean crops with variable growth and biomass/yield 
dynamics. Weeds, pests and diseases were managed as 
required. Experiments were sown in January 2018, October 
and November 2019. 

Experiment 1 was conducted from 16 January 2018 
(sowing date) to 9 April 2018 on a 2-ha plot comprising 
five replicates of two mungbean genotypes (Jade-AU and 
Satin II). Additionally, a zinc (Zn) fertiliser was applied with 
seeds as a starter, at a rate of 20–30 kg/ha. This experiment 
was conducted under conditions of high-water availability 
with 100 mm of irrigation at sowing, and a further 50 mm 
of irrigation after emergence due to a high-temperature 
period. No additional water was applied after this as adequate 
rainfall of 263 mm occurred. Row spacing was 40 cm with six 
rows per pass. 

Experiments 2 and 3 were respectively conducted from 22 
October 2019 (sowing date) to 2 February 2020 and 28 
November 2019 (sowing date) to March 2020. Two 
mungbean cultivars (Jade-AU and Crystal) were grown in 
four replicates under irrigated conditions. A Zn fertiliser 
was applied with seeds as a starter, at a rate of 20–30 kg/ha. 
Each plot size was 13 m long and 4.35 m wide. A total of 
381.4 mm and 333.1 mm of irrigation were applied in 
Experiments 2 and 3 across the season. These two experiments 
were planted on 50-cm row spacing with eight rows per plot. 

Data collection

Meteorological data, including maximum and minimum 
temperature, total rainfall, solar radiation and relative humidity, 
were obtained from a weather station for Experiment 1. The 
weather station was located at the University of Queensland 
in Gatton, which was 1 km north of the field experiment. The 
data was downloaded through the Bureau of Meteorology 
website. For Experiments 2 and 3, similar weather data 
were collected from a HOBO® RX3000 logger (HOBOlink®, 
Australia) weather station installed within the field trial area. 

Four to six biomass harvests were taken in the experiments. 
In Experiment 1, four inner rows along a 1-m transect (1.2 m2) 
inside the plot area were sampled from 10 plots (two genotypes, 
five replicates). In Experiments 2 and 3, a sampling area of 1 m2 

within three inner rows per plot was used to collect data across 

the experiments in eight plots (two genotypes and four 
replicates). Table 1 presents the dates for manual harvesting 
and UAV data collection at different growth stages for 
Experiments 1, 2 and 3. Growing degree days (GDD) were 
calculated based on the difference between the daily mean 
temperature and the base temperature (Arnold 1959), using 
a base temperature of 7.5°C (Robertson et al. 2002; 
Rachaputi et al. 2015; Chauhan and Williams 2018). When 
mungbean plants reached 50% flowering during all three 
experiments, the date of flowering was recorded. 

The total number of plants and leaf fresh weight of each 
sampling plot were recorded. The leaf area of each sample 
was obtained from a LI-3100C (LI-COR) leaf area meter. 
Subsequently, all leaves and stems were oven-dried for 6 days 
in paper bags at 65°C and their dry weights were recorded. 
From flowering onwards, leaves and stems, as well as 
reproductive organs (flowers, green and black pods), were 
split into components, weighed and dried separately. At the 
final harvest, pod counts and seed weight per plot were 
recorded. 

Light interception measurements were collected using an 
AccuPAR LP-80 ceptometer (Meter Environment®, USA). 
Measurements prior to every biomass harvest in experiment 
plots were performed under the full sun between 11:00 hours 
and 13:00 hours in six different locations under the canopy 
with four measures of incoming radiation above. The 
locations were fixed per plot to calculate accumulated light 
intercepted as the same canopy structure expanded over time, 
corresponding to the biomass and leaf area measurements. 

All the UAV images were collected to match with the 
ground truth data measurements undertaken in the vegetative 
and reproductive stages. Therefore, weekly or fortnightly 
flights were launched during the growing seasons at 15 m 
altitude in Experiment 1 and 20 m in Experiments 2 and 3 
over the field trials. These flights were conducted under 
low wind speed conditions and clear sky from 11:00 hours 
to 14:00 hours. The UAV platform used to collect images 
was a DJI Phantom 4 Pro. This UAV has a 20 Megapixel 
RGB camera that captures light in the visible spectrum 
(400–700 nm) in red, green and blue wavebands. To ensure 
accurate geolocation of the images, at least four ground 
control points (GCPs) were placed in the field prior to 
capturing the first set of images. The GPS coordinates of these 
targets were obtained using a GPS survey kit (Aeropoints 
https://www.propelleraero.com/aeropoints/), which allowed 
for precise location determination of the trials. The reference 
of GCPs ensures accurate geolocation of the images. 

Ground truth data pre-processing

Calculation of intercepted radiation
Intercepted radiation (R) is calculated as: 

R = I × f , 
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Table 1. Ground truth data collection in Experiments 1, 2 and 3.

Flight/
Sampling

UAV date Cumulative
GDD, UAV

Harvesting date Cumulative
GDD, Ground

Stage at
harvest

Experiment 1 1 21/11/2019 492 19/11/2019 450 Mid vegetative
(UAV, 15 meters) 2 14/02/2018 516 14/02/2018 516 End juvenile

3 20/02/2018 636 20/02/2018 636 Pre-anthesis

4 9/03/2018 931 12/03/2018 975 Start podding

5 21/03/2018 1122 26/03/2018 1204 Mid podding

6 5/04/2018 1368 9/04/2018 1425 End grain filling

Experiment 2 1 21/11/2019 492 19/11/2019 450 Mid vegetative
(UAV, 20 meters) 2 6/12/2019 785 3/12/2019 728 End juvenile

3 10/12/2019 868 17/12/2019 1020 Start podding

4 10/01/2020 1444 2/01/2020 1319 Mid podding

5 17/01/2020 1618 15/01/2020 1580 Grain filling

6 28/01/2020 1845 27/01/2020 1825 End grain filling

Experiment 3 1 10/01/2020 855 30/12/2019 628 End vegetative
(UAV, 20 meters) 2 17/01/2020 989 13/01/2020 914 Pod filling

3 28/01/2020 1217 29/01/2020 1239 Mid grain filling

4 14/02/2020 1536 13/02/2020 1516 End grain filling

where I is incident radiation (MJ/m2 per day) and f is 
fractional interception of incident light (De Costa et al. 
1999). Hence, incident solar radiation (MJ/m2 per day) from 
the Bureau of Meteorology reference station and fractional 
light interception obtained from AccuPAR LP-80 Ceptometer 
were used to calculate intercepted radiation at each sampling 
time. 

Calculation of RUE
Using all replicates per genotype and all harvest samples, 

RUE was calculated as the average value of the above-
ground biomass and cumulative intercepted radiation from 
sowing to anthesis before photosynthetic capacity decreased 
during the grain-filling stage (Monteith 1977). 

RUE = Total biomass=Cumulative interceped radiation 

Calculation of fractional light interception and
radiation extinction coefficient (k)

Using all sampled LAI replicates and light interception 
across multiple harvests, the radiation extinction coefficient 
(k) calculation was based on the Beer–Lambert Law. Monsi 
and Saeki (1953) concluded the formula as below, derived 
from Beer and Lamberts’ law: 

I = I0 × exp ð−k × LAIÞ, 

I0 − I
f = ,

I0 

f = 1 − exp ð−k × LAIÞ, 

k = − ln ð1 − f Þ=LAI; 

where I represents the intercepted radiation, I0 is the total 
incident light at the top canopy layer, f is the fractional light 
interception coefficient, k is a slope of the linear regression 
between −ln (1−f ) and LAI (Steven et al. 1986; Hirose 2005). 

Image data pre-processing

RGB image data were processed using the PhenoCopter tool 
(https://phenocopter.netlify.app/) and commercial software 
Pix4D (https://www.pix4d.com/) to produce orthomosaic 
images. We then applied plot segmentation, binary image 
classification and extraction of phenotype values: FVC and 
vegetation indices per plot for each UAV flight. Although 
PhenoCopter is no longer accessible, this pipeline can be 
replicated using Pix4D and GIS tools such as QGIS to create 
a matrix of plots to extract the data. Image classification is 
also available using EasyPCC (https://www.quantitative-
plant.org/software/easypcc) directly (Guo et al. 2017). 

Production of orthomosaic images
The set of 80% overlapped images for these three 

experiments collected in each flight was imported directly 
to the PhenoCopter website to generate an orthomosaic 
image. The raw images were stitched together to develop the 
orthomosaic images for each flight in different mungbean 
growth stages, as shown as an example in Fig. 1a. 

Plot segmentation
Mungbean fields were divided into small plots using the 

plot segmentation method, which involves drawing vector 
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(a) 

(b) 

Fig. 1. Orthomosaic image and plot segmentation. (a) Orthomosaic image of mungbean field on
14 February 2018 in Experiment 1 (left) and 17 January 2020 in Experiments 2 and 3 (right); (b) plot
segmentation in the field trial for UAV flight during Experiments 1 (left), 2 and 3 (right).

layers to separate the information from the orthomosaic 
images. This was done through the PhenoCopter website to 
align the orthomosaic images with the ground truth data 
collected per plot during the experiments. The whole field 
used for Experiment 1 was divided into 360 (12 × 30 = 360) 
plots (Fig. 1b). The total of 60 plots harvested for ground truth 
data was matched with UAV data. For Experiments 2 and 3, a 
total of 96 (12 × 8 = 96) plots were segmented, as shown in 
Fig. 1b, with only 16 plots assessed in Experiments 2 and 3. 

Image classification of vegetation and
background

An image classification procedure was undertaken using 
PhenoCopter website to differentiate the vegetation material 
from non-plant materials, including soil and mungbean 
shadows for each flight. Therefore, two distinct training 
datasets, one consisting of vegetation and the other non-
plant materials, were generated for each flight to enable the 
PhenoCopter software to accurately extract phenotypic 
information, including FVC and vegetation indices. This 

method can be replicated using the methods of Guo et al. 
(2017). 

Calculation of FVC
FVC were calculated effectively from an orthomosaic 

image with hundreds of three-channel RGB images by 
separating and classifying vegetation pixels from soil pixels 
and other non-vegetation pixels (Guo et al. 2013; Sharma 
et al. 2015) as demonstrated by (Duan et al. 2017). FVC is 
the ratio of the vertical projected area of vegetation to the 
total ground area (Lin and Qi 2004). Torres-Sánchez et al. 
(2014) concluded an expression for high-resolution images 
per plot as below: 

FVC = ðNumber of pixels classified as vegetation= 

Total number f pixelsÞ × 100 

Calculation of vegetation indices
Vegetation indices, including CIVE, GLI, ExG, NGRDI and 

VARI, were calculated using the PhenoCopter tools based on 
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Table 2. Vegetation index equations.

Name Abbreviation Equation Reference

Colour index of vegetation extraction CIVE 0.441 × Red − 0.881 × Green + 0.385 × Blue + 18.78745 Kataoka et al. (2003)

Excess green index ExG 2 × Green − Red – Blue Woebbecke et al. (1995)

Green leaf index GLI (2 × Green − Red − Blue)/(2 × Green + Red + Blue) Louhaichi et al. (2001)

Normalised green-red difference index NGRDI (Green − Red)/(Green + Red) Gitelson et al. (2002)

Visible atmospherically resistant index VARI (Green − Red)/(Green + Red − Blue) Gitelson et al. (2002)

the equations and references displayed in Table 2. Note that 
the PhenoCopter website is no longer functional, but these 
indices can be computed using Pix4D directly (as PhenoCopter 
used). In these equations, blue is the visible wavelength of 
450–495 nm, green is the visible wavelength of 495–570 nm, 
and red is the visible wavelength of 625–750 nm (Bruno and 
Svoronos 2005). No adjustment was made of the RGB channels 
in the images from the Phantom 4 Pro camera, which have a 
wider wavelength of response. 

Data analysis

Customised Python code scripts (Python ver. 3.10.9) were 
used to analyse the UAV and ground truth data. A two-
sample t-test at a 5% significance level was calculated to 
compare the performance of the varieties for each experiment 
at the observation date. A test for homogeneity of variances 
and normality of residues was performed to validate these 
analyses. In addition, to validate the use of UAV imagery from 
RGB cameras, regression analysis and Pearson correlation 
tests were used to compare ground data (biomass, leaf 
area and fractional light interception) and UAV imagery 
(vegetation indices and FVC) for the three mungbean 
cultivars and each sowing period. After preliminary analysis 
showed no cultivar and seasonal differences, the data from 
three cultivars from three experiments were combined to 
represent the mungbean features to analyse the relationship 
between UAV imagery and ground data during pre- and 
post-flowering stages. The UAV analysis grouped the data into 
two different subgroups (pre-flowering and post-flowering) 
based on the flowering dates across the three experiments. 

For Experiment 1, only three UAV flights (1, 2 and 3) were 
used to match with three sets of field sampling from the same 
period due to technical issues and data losses of the later three 
flights. However, these three early flights were sufficient to 
perform the correlation analysis between field data and UAV 
imagery and predict biomass at the pre-flowering stage. As a 
result, UAV data collected in Flights 1, 2 and 3 in Experiment 1 
and Flights 1 and 2 in Experiment 2 (Table 1) was considered 
pre-flowering data. UAV data from Flights 5 and 6 in 
Experiment 2 and Flights 2, 3 and 4 in Experiment 3 were 
considered post-flowering data. Other flights in Experiments 2 
and 3 were excluded due to the discrepancy between the field 
collection and drone flight dates. 

Results

Trial weather data across Experiments 1–3

The relationship between growing degree days (GDD) and the 
average maximum and minimum temperatures, as well as 
rainfall in mungbean Experiments 1, 2 and 3 are depicted in 
Fig. 2a. The average maximum and minimum temperatures 
for Experiment 1 were 31.8°C and 17.6°C, respectively. In 
Experiment 1, large temperature fluctuations with higher 
rainfall were apparent pre-anthesis (690 GDD, 20% flowering) 
but were more stable post-anthesis. The highest maximum 
daily temperatures and rainfall occurred towards the end of 
the vegetative stages. 

In Experiment 2, the average minimum and maximum 
temperatures were 17.7°C and 35°C, respectively. In 
Experiment 3, the average minimum and maximum tempera-
tures were 20°C and 34.37°C, respectively. In Experiment 2, 
the highest temperature was observed during the flowering 
period, whereas in Experiment 3, it occurred during the early 
growth stages. During Experiment 2, higher temperatures 
with relatively higher rainfall were seen during the flowering 
period (766 GDD, 50% flowering). In Experiment 3, higher 
temperatures and lower rainfall were observed in the 
period around the flowering (752 GDD, 50% flowering). 

In-crop rainfall was relatively low across the three experi-
ments. Total rainfall of 263 mm, 93 mm and 192 mm was 
observed in Experiments 1, 2 and 3, respectively. Most of 
the in-season rainfall occurred before flowering in Experiment 1 
and after flowering in Experiments 2 and 3 (Fig. 2a). Relative 
humidity (RH) varied across the seasons and experiments. 
Experiment 1 had consistently high RH (49.5–91.5%) across the 
season, whereas Experiments 2 and 3 had increasing RH values 
as the season progressed (Fig. 2b). The solar radiation (MJ/m2) 
among the experiments showed a relatively stable trend with an 
average of 19.7 MJ/m2, 24.1 MJ/m2 and 21.73 MJ/m2 for 
Experiments  1,2  and3, respectively (Fig. 2b). The average of solar 
radiation in Experiment 1 was lower than in Experiments 2 and 3. 

Ground truth data

LAI
There were no significant differences (Experiment 1, P = 

0.649; Experiment 2, P = 0.178; Experiment 3, P = 0.317) 
over time between the varieties used in Experiments 1, 2 and 
3. As a result, two varieties were combined to present LAI for 
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Fig. 2. Weather data for Experiments 1, 2 and 3. (a) Average maximum and minimum temperature (°C) and rainfall (mm);
(b) average measured relative humidity (%) and solar radiation (MJ/m2).

each experiment. For Experiment 1, LAI rapidly increased 
until canopy closure (around 619 GDD), then slowly rose and 
finally decreased as leaf senescence began. In Experiments 2 
and 3, LAI increased to a peak at the pod and grain develop-
ment stage (around 1319 GDD and 1259 GDD, respectively). 
During pod development, accelerating leaf senescence increased 
biomass partitioning to developing pods, thereby reducing 
canopy development. Maximum LAI for the three experiments 
were observed at the grain-filling stage as shown in Fig. 3a. 

Biomass
Development of biomass (g/m2) throughout the seasons in 

Experiments 1, 2 and 3 are shown in Fig. 3b. Overall, there 
were no significant differences (Experiment 1, P = 0.859; 
Experiment 2, P = 0.169; Experiment 3, P = 0.663) for 
cultivars in biomass in three experiments over time. In 
Experiments 1 and 3, the average total biomass tended to 
increase steadily throughout the entire growing period, 
whereas during Experiment 2, the varieties reached a peak 
during the filling stage around 1500 GDD. 

Fractional light interception
There were no significant differences between cultivars for 

fractional light interception in the three experiments 
(Experiment 1, P = 0.855; Experiment 2, P = 0.711; 
Experiment 3, P = 0.971). Overall, although fractional light 
interception throughout the growing season for three mungbean 
cultivars varied across the experiments, it consistently 
increased throughout the season, reaching a peak during early 
to mid-podding (seasonally dependent) and then declined 
before crop maturity as leaves senesced (Fig. 3c). In Experiment 1, 
the peak of fractional light interception occurred at the early 
pod filling stage (1170 GDD) at around 98%. The peak was 
around 60% and 80% for Experiments 2 and 3, respectively. 

Radiation extinction coefficient (k)
The radiation extinction coefficient for the different 

mungbean varieties was computed for each experiment, 
using a linear relationship between the –ln(1−fractional light 
interception) and LAI and forcing this relationship to pass 
through 0 (Fig. 4a). 
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Fig. 3. Growth parameters: leaf area index, fractional light interception and total biomass for
Experiments 1, 2 and 3. (a) Leaf area index (LAI); (b) total biomass (g/m2); (c) fractional light
interception (%).

Statistically significant differences between varieties for calculated for Jade-AU and Crystal, respectively. During 
Experiment 1, where LAI values were relatively higher, k 
values for Jade-AU and Satin II were 0.72 and 0.68 

k were only observed in Experiment 3 (P = 0.027). In 
Experiment 3, k values of 0.66 and 0.48 (R2 = 0.88) were 
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Fig. 4. Growth parameters: Extinction coefficient values (k) and radiation use efficiency for
Experiments 1, 2 and 3. (a) Extinction coefficient values (k) from the relationship between −ln
(1−fractional light interception) and LAI for three different mungbean varieties (Jade-AU, Satin II and
Crystal); (b) radiation use efficiency (RUE).

(R2 = 0.93), respectively. In Experiment 2, Jade-AU and 
Crystal had k values of 0.45 and 0.41 (R2 = 0.73), respectively. 

Radiation use efficiency (RUE)
Overall, statistical differences for RUE among the varieties 

were exclusively observed in Experiment 2 (P = 0.020) for 
Crystal and Jade-AU. In this context, RUE values were 
1.00 g/MJ for Crystal and 0.84 g/MJ for Jade-AU, as depicted 
in Fig. 4b: Experiment 2. These differences are discernible 
specifically in the mid-podding and grain-filling stages for 
Experiment 2. No statistically significant differences were 
observed between the varieties in Experiments 1 (P = 0.659) 
and 3 (P = 0.156). 

UAV imagery data

All three experiments’ data were combined to analyse the 
relationship between UAV imagery and ground data, because 

no significant differences existed in LAI, biomass and 
fractional light interception between cultivars across the 
season. However, ground truth data was split into pre- and 
post-flowering data as the relationships between biomass 
development and light interception changed significantly in 
the post-flowering period. As a result, UAV data analysis 
was also divided into two different subgroups (pre-flowering 
and post-flowering) across the three experiments. 

Relationship between total biomass, FVC
and fractional light interception at pre-and
post-flowering stages

Pre-flowering there was a strong linear relationship 
between fractional light interception and FVC (R2 = 0.90), 
but post-flowering this relationship was weak (R2 = 0.09) 
in Fig. 5a. There was also a relatively strong relationship 
(R2 = 0.69) between total biomass and FVC at pre-flowering 
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Fig. 5. Relationship between fractional light interception, total biomass, and fractional vegetation
cover for pre-flowering and post-flowering stages. (a) Relationship between the fractional light
interception (%) and fractional vegetation cover; (b) relationship between total biomass (g/m2)
and fractional vegetation cover (%).

stages, which disappeared at post-flowering stages (R2 < 0.01), 
seen in Fig. 5b. 

Relationship between total biomass, LAI and
vegetation indices (CIVE, GLI, ExG, NGRDI and
VARI) pre-and post-flowering stages

Overall, the strength of the relationships between total 
biomass, LAI and all vegetation indices (CIVE, GLI, ExG, 
NGRDI and VARI) was significantly influenced by crop 
growth and phenological stages. During the pre-flowering 
stages, biomass and LAI were correlated with all vegetation 
indices (Table 3; all R2 > 0.60). In comparison, biomass was 
poorly correlated (R2 ≤ 0.08) with all vegetation indices post-
flowering, and only weak relationships (R2 ≤ 0.41) occurred 
with LAI in the post-flowering period. Biomass and LAI had 
the most robust association with NGRDI (R2 = 0.87 and 
R2 = 0.89, respectively) before flowering. 

Relationship between the predicted biomass and
total observed biomass

There was a strong relationship between the predicted 
biomass from FVC and observed biomass pre-flowering 
(R2 = 0.79), which disappeared post-flowering (R2 < 0.01). 
Across the vegetation indices, the highest correlations were 
observed with NGRDI and ExG during pre-and post-flowering 
stages. The predicted biomass from NGRDI had a positive and 
robust relationship with the observed biomass during the pre-
flowering stages (R2 = 0.86). 

Discussion

Growth parameters under different sowing times

This study found no significant differences in leaf area 
index (LAI), biomass, fractional light interception, radiation 
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CIVE 0.60 0.64

ExG 0.86 0.89

GLI 0.86 0.89

NGRDI 0.87 0.89

VARI 0.80 0.81
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Table 3. Relationships between biomass, LAI and vegetation index
across the three experiments during pre-and post-flowering stages.

Stage Vegetation index R2

Biomass LAI

Pre-flowering

Post-flowering CIVE 0.04 0.41

ExG 0.08 0.41

GLI 0.08 0.41

NGDRI 0.01 0.37

VARI 0.03 0.01

Bolded data indicates biomass and LAI had the most robust association with
NGRDI at pre-flowering stage.

extinction coefficient (k) or radiation use efficiency (RUE) 
among three genotypes: Jade-AU, Satin II and Crystal. 
Given that the three varieties have similar morphological 
characteristics, including a determinate growth pattern and 
similar plant architecture, with flower buds differentiating 
at the apex of the main stems or branches (Chauhan and 
Williams 2018), this may not be surprising. The lack of differ-
ences in the measured traits could be due to the similarities in 
the photosynthetic capacities, environmental responses and 
resource utilisation of the three varieties (Geetika et al. 
2022a). Jade-AU, Satin II and Crystal, which account for 
over 90% of the country’s mungbean seed production, all have 
large green seeds (Chauhan and Williams 2018). Geetika et al. 
(2022a) reported similar findings, showing that there was no 
significant difference in radiation extinction (k) or RUE 
between the genotypes Jade-AU, Opal-AU and Satin-II in 
two field trials. Opal-AU, like the mungbean varieties used 
in this study, is also a large-seeded shiny green genotype 
(Australian Mungbean Association 2020). 

Although Experiments 2 and 3 received additional 
irrigation after sowing, the canopy structure of Experiment 
1 was substantially more vigorous and larger throughout the 
growing season in terms of LAI, fractional light interception 
and biomass, possibly due to the high in-season rainfall 
during the vegetative stage in Experiment 1. In Experiments 
2 and 3, the rainfall mainly occurred during the post-
flowering stages when the canopy growth rate had started 
to decrease. This led to variations in canopy development 
among the experiments. 

Biomass accumulation is determined by LAI, radiation 
extinction coefficient (k), the duration of fractional light 
interception, and RUE (Tesfaye et al. 2006; Chauhan and 
Williams 2018). Biomass in legumes is generally positively 
correlated with LAI under conditions with no water stress; 
LAI is reduced dramatically when the plants are stressed with 

high temperatures and water stress during the vegetative 
stages (Tesfaye et al. 2006). Extremely high temperatures 
(above 40°C) and direct effects of heat during flowering 
(Experiment 2) and pod stages (Experiment 3) may have 
affected biomass accumulation of Jade-AU and Crystal. 
Patriyawaty et al. (2018a) found that high temperatures 
significantly reduced dry matter production and grain yield 
of mungbean cultivars Jade-AU and Crystal. High tempera-
tures impact floral abortion rates, decrease pollen viability 
and reduce biomass accumulation (Patriyawaty et al. 2018b; 
Rachaputi et al. 2019). Temperature fluctuations and 
unpredictable rainfall have been observed to negatively affect 
mungbean biomass. This is consistent with previous research 
in Geetika et al. (2022b), which has shown that extreme 
temperatures and moisture stress during the growing season 
can reduce mungbean growth and yield. For example, high 
temperatures during the flowering stage can reduce pod set 
and seed filling, and prolonged drought can reduce leaf area 
and photosynthesis, leading to reduced biomass accumulation. 

Sowing time also affects biomass. As observed in this study, 
the optimal time to achieve maximum mungbean biomass is 
the summer season (around January) due to the favourability 
of warmer weather at the vegetative stages (Robertson 
et al. 2000). The highest biomass accumulation occurred in 
Experiment 1 planted in February 2018, whereas biomass 
was reduced in Experiments 2 and 3 sown in October and 
mid-November 2019, respectively. High levels of in-season 
rainfall in Experiment 1 also contributed to increased biomass. 

Higher LAI results in higher fractional light interception, 
which enhances crop growth rate and consequently leads to 
higher biomass (Yousefi et al. 2021). Greater LAI can 
contribute to higher biomass in mungbean, but it is not the 
only determining factor. Experiment 1 had much higher LAI 
and fractional light interception than Experiments 2 and 3, 
which likely contributed to its higher biomass accumulation. 
Agronomic management practices such as row spacing and 
plant density have been recognised as crucial strategies that 
can significantly impact the canopy radiation environment 
under favourable growing conditions (Geetika et al. 2022a). 

Experiment 1 showed higher estimated k and RUE 
compared to Experiments 2 and 3, possibly due to temperature– 
radiation imbalances and higher temperatures during 
mungbean’s reproductive stages. According to Rachaputi 
et al. (2015), a decrease in k can result in a reduction in 
fractional light interception per unit of LAI and dry matter 
accumulation. The RUE values of the three cultivars in 
Experiments 1 and 2 were consistent with earlier studies on 
mungbean, which reported baseline RUE values of 0.8–1 g/MJ  
in well-watered environments (Muchow et al. 1993; Rachaputi 
et al. 2015; Chauhan and Williams 2018). Experiment 1, which 
was conducted during the summer season of 2018, was 
associated with the highest RUE, of up to 1.3 g/MJ. This 
value is consistent with the findings of Geetika et al. (2022a), 
who reported a RUE of 1.3 g/MJ for the same genotypes 
(Jade-AU and Satin II) in field trials conducted in the 
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summer season of 2019 and 2020. Variations observed among 
the three experiments could be attributed to fluctuations in 
temperature–radiation equilibrium, particularly during the 
reproductive stages of mungbean growth (Geetika et al. 2022b). 

Relationship between UAV imagery and ground
data on mungbean biomass prediction

FVC has been utilised to monitor vegetation conditions and 
estimate biomass from UAV-based RGB imagery (Yan et al. 
2019; Yue et al. 2019). In this study, FVC from the UAV 
image data strongly correlated with the fractional light 
interception (R2 = 0.90) during the pre-flowering stage. 
This high level of correlation means that using FVC derived 
from UAV data provides a valid alternative to more 
detailed ground-based, time and labour-intensive ceptometer 
measurements of light interception (Steven et al. 1986; 
Gitelson 2013). This study shows that UAV-based measure-
ments can provide an alternative approach to estimate RUE 
using FVC, which is strongly correlated with biomass but is 
not equivalent to biomass itself. 

Crop canopy structure, field background, separation and 
classification in the process of orthomosaic images can 
affect FVC computation in later stages (Bendig et al. 2015; 
Wan et al. 2021). Factors such as shading, increased canopy 
density with overlapping leaf layers, cessation of vegetative 
growth and later leaf senescence are likely to influence the 
accuracy of fractional light interception and consequently, 
the quantification of FVC at post-anthesis stages in all three 
experiments. 

At the pre-anthesis stages, we observed that the 
relationships between FVC and fractional light interception, 
as well as between FVC and biomass, were comparable to the 
strong correlation between UAV-derived vegetation indices 
and biomass or LAI. Specifically, all the vegetation indices 
showed a strong relationship (all R2 > ~0.80, except CIVE) 
at pre-flowering stages. These relationships all became poor 
(all R2 < 0.41) at post-flowering stages (Table 3). In 
particular, biomass and LAI had the most robust relation-
ship with NGRDI in the pre-flowering stage. Based on these 
results, NGRDI can accurately predict growth parameters of 
mungbean before flowering. NGRDI is considered to be a 
greenness index representing the combined effect of canopy 
architecture, leaf area and chlorophyll concentration that is 
strongly linked with biomass (Torres-Sánchez et al. 2014). 
Additionally, Jannoura et al. (2015) showed a relatively 
good relationship (R2 = 0.58–0.78) between the above-ground 
biomass and NGRDI in three different crops/combinations of 
crops (sole peas, intercropped peas/oats, and sole oats). 

In this study, a significant correlation was also found 
between biomass, LAI, and the vegetation indices GLI, ExG 
and VARI during the pre-flowering stages. High positive GLI 
values indicate the presence of healthy green leaves and 
stems, which are useful for monitoring vegetation growth 
and assessing vegetation health (Louhaichi et al. 2001). The 

advantage of ExG is that it can provide a clear contrast 
between plants and soil and produce near binary images, 
whilst VARI can reduce the sensitivity to atmospheric factors 
to estimate biomass and LAI (Woebbecke et al. 1995; Gitelson 
et al. 2002). Marcial-Pablo et al. (2019) compared vegetation 
indices from the visible spectrum (ExG, CIVE and NGRDI) and 
other vegetation indices, such as normalised difference 
vegetation index (NDVI), green NDVI and normalised green 
from NIR sensors in maize by separating vegetation and 
bare soil as accurately as possible. They demonstrated high 
accuracy of ExG to monitor FVC at earlier growth stages, 
whereas later growing stages would require using a near-
infrared sensor. (Kataoka et al. 2003) claimed that CIVE 
could separate vegetation from soil background to evaluate 
crop growing status and have a high correlation with growth 
parameters in sugar beet and soybean. However, CIVE in this 
study had the lowest correlation with biomass and LAI com-
pared to other vegetation indices during the pre-flowering 
period. 

Other studies have also observed weak correlations 
between biomass/LAI and vegetation indices at later growth 
stages, possibly to due saturation at high LAI and biomass. 
Hunt et al. (2005) argued that dry biomass from zero to 
120 g/m2 (early stage: before canopy closure) was linearly 
correlated with NGRDI obtained from digital cameras in 
soybeans, but beyond this point, NGRDI saturated and did not 
show any further increase when soybean biomass increased 
from 150 to 600 g/m2 (later stage). Motohka et al. (2010) 
noticed significant saturation happened in the middle of the 
growing period using NDVI to monitor biomass, although 
it usually had a marginally better cross-validation result 
than the NGRDI index. According to Yue et al.(2019), the 
estimates of biomass by using vegetation indices based on 
UAV data from RGB camera presented high accuracy at an 
early stage compared to later crop growth stages in wheat, 
since saturation and no unchanged cover are seen in the 
later growth stages. Across all crops, including mungbean 
in this study, these relationships are strong pre-flowering 
and weak post-flowering as canopy density increases. 

Another potential reason for the better biomass prediction 
models originating from FVC and NGRDI (highest correlation 
with biomass and LAI) during pre-flowering stages may relate 
to canopy morphological structure. Mungbean plants grow 
tightly together and overlap each other after flowering in the 
field, although row spacing was applied within the range 
recommended for this crop. This made accurately predicting 
biomass more difficult as the season progressed because UAV 
images were captured above the ground, and overlapped 
biomass in image pixels cannot represent real biomass at 
later stages in the field. 

The study on the relationship between UAV imagery and 
ground data on mungbean biomass prediction found a strong 
correlation between the two methods at pre-flowering stages. 
The research team was able to accurately and efficiently 
measure growth parameters and biomass estimation using 
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UAV imagery. These findings suggest that UAV imagery can 
be a reliable and cost-effective method for measuring crop 
growth parameters, particularly in crops like mungbean 
where ground-based measurements are challenging. The 
study’s implications for future research in mungbean and 
other crops include the potential for wider adoption of UAV 
technology in crop monitoring and management. Additionally, 
the study highlights the need for further research to optimise 
the use of UAV imagery for crop monitoring and to better 
understand the relationship between UAV and ground-
based data. Other modified vegetation indices from high-
resolution RGB cameras or combining an RGB with NIR 
sensor to assess biomass in the mungbean’s later stages may 
need to be considered. More studies with UAV-based RGB 
imagery in legumes, particularly mungbean, are encouraged 
by using FVC through different crop growth stages, locations 
including glasshouse and fields, genotypes and experimental 
designs in future years. 

Conclusions

In this study, we compared UAV imagery with field sampling 
(biomass, leaf area and fractional light interception) to assess 
growth parameters in mungbean, providing a new and 
innovative approach to monitor and estimate biomass. The 
use of UAV applications with RGB imagery in mungbean 
fields provided an alternative to manual collection of light 
interception measurements for estimating biomass during 
pre-flowering stages. This was achieved by developing 
models using vegetation indices, specifically NGRDI, and 
FVC. These two biomass prediction models allow relatively 
accurate non-destructive biomass prediction before flowering 
under no water stress conditions through two seasons/three 
sowing date experiments in the field. This study has shown 
that using a UAV-mounted RGB camera is a practical and 
cost-effective replacement to manual measurements for collect-
ing data on mungbean at the pre-flowering stage. The results 
demonstrate that this method can provide accurate information 
with less labour and lower costs compared to traditional 
methods. This information is important for developing 
strategies to improve mungbean productivity and increase 
food security, particularly in regions where mungbean is an 
important crop for smallholder farmers. 
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