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ABSTRACT
For full list of author affiliations and
declarations see end of paper Context. Insects are a major threat to crop production. They can infect, damage, and reduce

agricultural yields. Accurate and fast detection of insects will help insect control. From a
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computer algorithm point of view, insect detection from imagery is a tiny object detectionFerdous Sohel
Information Technology, Murdoch problem. Handling detection of tiny objects in large datasets is challenging due to small
University, Murdoch, WA 6150, Australia resolution of the insects in an image, and other nuisances such as occlusion, noise, and lack of
Email: F.Sohel@murdoch.edu.au features. Aims. Our aim was to achieve a high-performance agricultural insect detector using

an enhanced artificial intelligence machine learning technique. Methods. We used a YOLOv3
Handling Editor:

network-based framework, which is a high performing and computationally fast object detector.Davide Cammaran
We further improved the original feature pyramidal network of YOLOv3 by integrating an adaptive
feature fusion module. For training the network, we first applied data augmentation techniques to
regularise the dataset. Then, we trained the network using the adaptive features and optimised the
hyper-parameters. Finally, we tested the proposed network on a subset dataset of the multi-class
insect pest dataset Pest24, which contains 25 878 images.Key results. We achieved an accuracy of
72.10%, which is superior to existing techniques, while achieving a fast detection rate of 63.8 images
per second. Conclusions. We compared the results with several object detection models
regarding detection accuracy and processing speed. The proposed method achieved superior
performance both in terms of accuracy and computational speed. Implications. The proposed
method demonstrates that machine learning networks can provide a foundation for developing
real-time systems that can help better pest control to reduce crop damage.
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Introduction

Agriculture is critical for the world’s economy and is the economic backbone of many 
countries. Agriculture also provides food, raw materials, and jobs to a large part of the 
population. However, plants and crops can suffer from various factors, e.g. chemical 
(Pimentel 2009), frost (Shammi et al. 2022), weeds (Hasan et al. 2021), and insects (Liu 
and Wang 2021). Insects are a major problem in the agricultural sector, and are one of 
the main biotic factors which cause agricultural losses. They can damage plants by 
transmitting bacterial, viral, or fungal infections (Hogenhout et al. 2008), and cause 
serious injury by eating leaves and entering fruits, roots or stems (Strauss and Zangerl 
2002). Crop health experts in 67 countries undertook a recent study reported by (Savary 
et al. 2019), which demonstrated that pathogens and insects cause 10–28% of lost yield 
in wheat, 25–41% losses for rice, 20–41% losses for maize, 8–21% losses in potato, and 
11–32% losses in soybean. Therefore, it is essential to control insects to minimise yield 
losses by accurate and fast detection with early intervention and automated control. 
When crop plants are infested with multiple insect species this results in greater losses 
to yields and poorer product quality. Developing multi-insect detection strategies has 
become an essential part of pest management (Dangles et al. 2009). 
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Recently, several agriculture datasets have been released 
publicly. The IP102 released by (Wu et al. 2019) is a large 
dataset for single target insect pest recognition. It contains 
75 000 images with 102 insect pest categories. Insects in 
this dataset are divided into 8 sub-classes, each sub-class 
damaging a specific crop: rice, corn, and wheat. Agripest 
(Wang et al. 2021) provides a multi-target dataset for insect 
recognition and detection, it contains 49 700 images of 
14 pest species damaging four types of crops: wheat, rice, 
corn, and rapeseed. Images were collected in real-field 
conditions, with extremely small-size insects and compli-
cated backgrounds. Another large multi-target insect dataset, 
Pest24, was released by (Wang et al. 2020) containing 28 958 
raw images collected using an automated insect images 
acquisition device, that can trap field insects in crops and 
take photos. This dataset consists of 38 insect categories 
belonging to five insect orders, i.e. Coleoptera, Homoptera, 
Orthoptera and Lepidoptera. Coleoptera (beetles, weevils) 
and Lepidoptera (moths) species are the most important 
insects that affect agriculture crops; they feed on flowers 
and foliage, attack plant roots, and ingest leaf or grain 
tissue. The three Australian unwanted plant pests that have 
the greatest potential cost and impact on crops are Xylella 
fasidiosa, Khapra beetle and exotic fruit flies (Australian 
Department of Agriculture, Water and the Environment 
2021). Below ground parts of plants, including cereal crop, 
e.g. wheat, oilseed crop, e.g. soybeans, and tuberous crops, 
e.g. potato and radish, are often infested by Orthoptera 
species (Gryllotalpidae family), which can cause severe 
damage to host plants by entering and damaging the root 
systems, resulting in an increased susceptibility to water 
stress, so that the infested plant may eventually die. 

Precise control and management of insect pests in the crop 
is an active research topic. Real-time monitoring of 
agricultural insect pests is crucial in precision agriculture. 
Traditionally, visual inspection and manual counting were 
done to acquire information on insect populations. However, 
these methods are labour-intensive, time-consuming, and 
potentially inconsistent due to the human factor. With the 
rapid development of machine learning and deep learning 
techniques, automatic detection of agricultural insects is 
now feasible. Recent developments in deep neural networks 
have allowed researchers to improve the accuracy of 
object detection and recognition systems. Typically, object 
detection consists of two main steps: first, the localisation 
of the target objects, and second, the classification of the 
objects on images. From a computer science and image 
point of view, insect detection from imagery can be seen as 
a tiny object detection problem. Detection of medium and 
large-size objects in images has been achieved for many 
applications. Several Convolutional Neural Network (CNN)-
based object detection models have been proposed to 
handle the object detection problem. Based on the 
architecture of the networks, CNN-based object detectors 
can be separated into major categories: two-stage detectors 

and one-stage detectors, where the first category frames the 
detection as a coarse-to-fine process such as RCNN (Region-
based CNN, Girshick et al. 2014), Faster RCNN (Ren et al. 
2015), and Mask RCNN (He et al. 2017). In contrast, the 
one-stage detectors frame it in one step, e.g. YOLO (‘You 
Only Look Once’, Redmon et al. 2016), SSD (‘Single Shot 
Multibox Detector’, Liu et al. 2016), and RetinaNet (Lin 
et al. 2017). CNN-based object detection models can 
achieve high accuracy when dealing with single-scale large 
and medium-sized objects. However, detecting tiny objects, 
such as a 15 × 15 pixel bird in an aerial image, remains 
challenging (Liu et al. 2021). Lack of features, low resolution, 
complex backgrounds, and limited contextual information are 
the main difficulties when dealing with the tiny object 
detection problem (Zheng et al. 2012). Several deep learning 
models have been developed for tiny object detection 
(Zhao et al. 2019). Some studies have demonstrated that 
combining different feature layers is important to detect 
small-sized objects. Others have used contextual information 
to increase the recognition rates of objects. Moreover, 
techniques to improve classification accuracy have achieved 
superior results, such as those addressing imbalanced class 
examples and insufficient training data. Occlusion is another 
major nuisance when performing insect detection on images. 
This is a common real-world scenario, and it occurs when 
objects come too close or overlap others. Insect images with 
rich texture can be detected under occlusion, thanks to the 
distinctive local features, such as SIFT (‘Scale Invariant 
Feature Transform’ Lowe 2004). However, the detection of 
objects with less texture remains very challenging. They 
have large uniform regions characterised by their contour 
structure, which is ambiguous even without occlusions. 
Many research papers have proposed techniques to address 
this issue (Plantinga and Dyer 1990; Toshev et al. 2010; 
Gao et al. 2011; Lai et al. 2011; Hinterstoisser et al. 2012). 
Although, in these cases, occlusion problems have been 
divided into different sub-problems such as texture-less 
objects, arbitrary viewpoint, and occlusions, since addressing 
them together is extremely hard. Another challenge when 
dealing with the detection of tiny objects is the lack of good 
positive examples (Liu et al. 2021). It is hard to generate a 
large number of small anchor boxes that fit tiny objects during 
network training. Anchor boxes need to be matched with 
ground truth boxes. Tang et al. (2021) introduced the YOLO 
pest detection network, using deep image mining and multi-
feature fusion: they based their work on YOLOv4. They 
improved the existing feature pyramidal network (FPN) of 
YOLOv4 by using a cross-stage multi-feature fusion (CSFF) 
method, this model was evaluated on Pest24 insect images 
dataset and achieved a mAP (Mean Average Precision) of 
71.6%. Li et al. (2021) developed an insect detection and 
counting model based on YOLOv3. They improved the insect 
detection accuracy from complicated insect images with 
complicated background by using CSPDarket53 as the network 
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backbone. They improved the detection accuracy by 3% 
compared to the default YOLOv3. 

This paper introduces an object detection framework based 
on an improved YOLOv3 network to detect insects in a subset 
of the agricultural pest dataset, namely Pest24. First, we 
applied data augmentation techniques to regularise the 
training set and avoid overfitting. Then we integrated an 
adaptive feature fusion module (AFF) to reuse features of 
different scales of FPN (feature pyramid network), which 
will increase significantly the feature extraction of tiny 
insects by learning the spatial weight at different scales. 
The resulting feature maps were then applied to the 
YOLOv3 pipeline (Redmon and Farhadi 2018) for insect 
detection. Finally, we compared our method with state-of-
the-art object detectors regarding accuracy and processing 
time. The section ‘Data set and pre-processing’ presents the 
dataset characteristics and describes the pre-processing steps. 
The section ‘Object detection network’ presents the proposed 
pest detection technique, and is followed by an evaluation and 
the results. Finally, we sum up with a conclusion and 
recommendations for future work. 

Related work

Significant yield losses in crops are caused by Lepidoptera 
species including butterflies, skippers and moths (Bradshaw 
et al. 2016). Because Lepidoptera deposit many eggs, the 
larval feeding from plant leaves causes direct defoliation. 
The most common methods used to control these insects 
are delta traps. The different positions and orientations that 
these insects can display when attached to sticky traps 
present a challenge for developing detection and classifi-
cation models (Wen et al. 2015). Silveira and Monteiro 
(2009) developed a tool that automatically detects eyespots 
on butterfly wings from digital images. They used a 
machine learning model with features based on circularity 
and symmetry. This model was able to detect eyespot 
patterns of different insect species. However, this method 
has limitations with small wing sizes. Wen et al. (2015) 
proposed a pose estimation-dependent method for automated 
identification of field moths. This method is based on a 
pyramidal stacked de-noising auto-encoder (IpS-DAE) deep 
learning model. The model combines the shape, colour, and 
texture features extracted for insect description. This model 
achieved highly accurate mAP (Mean Average Precision) of 
moth detection. However, this work does not perform the 
classification of the insects. Guarnieri et al. (2011) designed 
an automatic electronic trap, which was able to monitor 
the codling moth (Cydia pomonella) for remote visual 
inspection. Many models have been developed based on 
Artificial Neural Networks (ANNs) for insect pest detection 
and classification. ANNs are computational trained models 
which can detect objects in images. Kaya et al. (2015) 

presented a computer vision method for the automatic 
detection of butterfly species. Based on local binary 
patterns and ANNs, this method could identify five 
butterfly species from the family Papilionoideae. This model 
could effectively describe the main characters of butterfly 
images with high classification accuracy. Wang et al. (2012)  
developed an automatic insect identification system combining 
ANNs and a support vector machine (SVM). They identified 
more than 200 insect species from 64 families such as 
Hymenoptera, Coleoptera, Odonata, and Orthoptera. Kang 
et al. (2014) presented a novel method for butterfly 
identification when viewed from different angles based on 
BTS (branch length similarity) entropy. This system 
performed well for simple butterfly images. However, multi-
class recognition was not performed. Kaya et al. (2013)  
presented a CNN-based model with transfer learning to classify 
crop field insects. This model was applied to three public 
datasets to detect different Lepidoptera species. The results 
showed an improvement in classification performance for 
three insect datasets. Thenmozhi and Srinivasulu Reddy (2019) 
used histograms of multi-scale curvature (HoMSC) and grey-
level co-occurrence matrix of image blocks (GLCMoIB) to 
describe the shape of butterfly wings for insect classification. 
This method was effective in distinguishing different species 
of butterflies from digital images. However, images containing 
butterflies have simple backgrounds and insects of similar 
sizes. Liu et al. (2019) deployed an autonomous robot vehicle 
for pest monitoring to implement a new method for Pyralidae 
pest identification. They proposed a segmentation algorithm by 
inverse histogram mapping for the pest image segmentation, 
followed by a recognition approach aspired by Hu moment. 
Results showed high identification accuracy with acceptable 
computation complexity. Xia et al. (2018) proposed a CNN 
model for multi-class insect detection. They used a Region 
Proposal Network instead of a traditional selective search, 
which improved prediction accuracy. However, this method 
suffers from errors in target detection that affect real-time 
operations. Shen et al. (2018) proposed an optimised deep 
neural network based on the Faster RCNN to detect grain 
storage insects. The air of this work was multi-scale feature 
map extraction of insects under field conditions with visual 
noise. This method can detect insects that are overlapping 
and achieve a high mAP of 88%. 

Dataset and pre-processing

Dataset characteristics

This research used a subset of the Pest24 dataset (Wang et al. 
2020). Pest24 is a large-scale multi-class dataset consisting of 
25 878 annotated images of 800 × 600 pixels. The insect 
images were collected in-field using an automatic pest trap 
and image acquisition device. Thirty-seven insect categories 
are in the dataset, of which 24 categories were considered for 
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(1) Nilaparvata (2) Cnaphalocrocis (3) Chilo (4) Spodoptera (5) Helicoverpa (6) Loxostege
lugens medinalis suppressalis frugiperda armigera sticticalis 

(7) Athetis (8) Spodoptera (9) Spodoptera (10) Chilo (11) Agrotis (12) Plutella 
lepigone litura exigua polychrysus ypsilon xylostella 

(13) Mamestra (14) Scotogramma (15) Parantica (16) Agrotis (17) Xestia 
brassicae trifolii menadensis tokionis c-nigrum 

(19) Holotrichia (20) Anomala (21) Gryllotalpa (22) Elateridae (23) Agriotes (24) Melanotus 
parallela corpulenta orientalis spp fuscicollis Miwa 

Fig. 1. Examples of insect classes in the Pest24 insect dataset subset.

this research, as shown in Fig. 1. These included Coleoptera, 
Homoptera, Hemiptera, Orthoptera, Lepidoptera and 13 other 
families. 

The Pest24 dataset has large-scale, multi-scale, multi-class 
image data, small objects, non-target specimens, high object 
similarity, and dense object distributions. Some features are 
shown in Fig. 2. The relative scales of insects in Pest24-subset 
images are generally small. The largest insect is Gryllotalpa 
orientalis, with a relative scale 0.95%. The smallest insect 
is Nilaparvata lugens, which means that the insects are 
considered tiny objects. The most common insect in the dataset 
is Anomala corpulenta, with 53 347 instances, and the least 
present is Holotrichia oblita, with only 108 instances. 

The images were divided into 12 701 as a training set, 5077 
as the validation set, and 7600 as a test set for evaluation. 

Because there were non-target insects in the images, not all 
objects are labelled in the dataset. Additionally, some non-
target insects are similar to target insects, affecting detection 
accuracy. Eleven hundred images contained non-target 
insects, and 5000 images were characterised by distortion 
due to the shooting angle. Furthermore, occlusion and 
shadows were present in 600 images. Table 1 summarises 
the number of images and instances of each insect category 
in the dataset. 

Data augmentation

Unlike two-stage detectors such as Faster-RCNN or Cascade-
RCNN, the performance of one-stage detectors can be 
significantly improved by applying data augmentation 

(a) (b) (c) (d) 

Fig. 2. Pest24 dataset characteristics: (a) non-target insects (red circles), (b) overlapping, (c) inflection spots caused by illumination
problems, (d) too large non-target background.
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Table 1. Number of images and instances of each pest category used from the subset Pest24 dataset.

Index Species Images Instances Index Insect Images Instances

1 Nilaparvata lugens 316 1511 13 Mamestra brassicae 1707 2302

2 Cnaphalocrocis medinalis 944 1240 14 Scotogramma trifolii 3223 4679

3 Chilo suppressalis 454 1285 15 Parantica menadensis 1388 1686

4 Spodoptera frugiperda 3828 8880 16 Agrotis tokionis 369 475

5 Helicoverpa armigera 9049 28 014 17 Xestia c-nigrum 154 168

6 Loxostege sticticalis 5526 16 516 18 Holotrichia oblita 90 108

7 Athetis lepigone 7520 30 339 19 Holotrichia parallela 3111 11 675

8 Spodoptera litura 1588 1951 20 Anomala corpulenta 5228 53 347

9 Spodoptera exigua 3614 7263 21 Gryllotalpa orientalis 3629 6528

10 Chilo polychrysus 1357 1804 22 Elateridae spp. 118 167

11 Agrotis ypsilon 2503 4279 23 Agriotes fuscicollis Miwa 1814 6484

12 Plutella xylostella 531 953 24 Melanotus 239 768

Inputs 
(batch_size, 416, 416, 3) 

Conv 32×3×3+Conv 64×3×3_s2 
(batch_size, 208, 208, 64) 

Residual block 1×64 
(batch_size, 208, 208, 64) 

Conv 128×3×3_s2 
(batch_size, 104, 104, 128) 

Residual block 2×128 
(batch_size, 104, 104, 128) 

Conv 256×3×3_s2 
(batch_size, 52, 52, 256) 

Conv block 
3×(128×1×1+256×3×3) 
(batch_size, 52, 52, 256) 

Cony 255×1×1 
(batch_size, 52, 52, 255) 

Residual block 8×256 
(batch_size, 52, 52, 256) 

Concatenate 
(batch_size, 52, 52, 384) 

Cony 128×1×1+Upsample 
(batch_size, 52, 52, 128) 

Detection results 

Conv 512×3×3_s2 
(batch_size, 26, 26, 512) Scale1: Small object detection 

Residual block 8×512 
(batch_size, 26, 26, 512) 

Conv 1024×3×3_s2 

Concatenate 
(batch_size, 26, 26, 768) 

Conv block 
3×(256×1×1+512×3×3) 
(batch_size, 26, 26, 512) 

Conv 255×1×1 
(batch_size, 26, 26, 255) 

(batch_size, 13, 13, 1024) 
Conv 256×1×1+Upsample Detection results 

(batch_size, 26, 26, 256) 

Residual block 4×1024 Scale2: Medium object detection 
(batch_size, 13, 13, 1024) 

Cony block 3×(512×1×1+1024×3×3) 
(batch_size, 13, 13, 1024) 

Conv 255×1×1 
(batch_size, 13, 13, 255) Detection results 

YOLOv3 Scale3: Large object detection 

Fig. 3. YOLOv3 architecture.

techniques (Zhang et al. 2019). This is because the repeated feature maps generates detection outputs in two-stage 
cropping of Regions of Interest (ROIs) on the related detectors. Two-stage detectors substitute the process of 
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random crop of the input images, which means that extensive 
geometric augmentations are not required in this type of 
network. YOLOv3 is an anchor-based detector; it uses 
anchor boxes for object prediction. However, it is hard to 
generate anchor boxes that fit the insect with small-sized 
insects in images. Therefore, generating more data on the 
training set via data augmentation techniques can help 
increase the number of anchor boxes and help prevent 
overfitting. Our experiments applied random cropping, 
horizontal flip, and resized the input images to 608 × 608 
pixels. After data augmentation, the number of images in 
the training set increased from 12 701 to 18 344 (only used 
to train YOLOv3 and YOLOv3-AFF). 

Object detection network

YOLOv3

This work used the one-stage object detector YOLOv3, a 
fully connected convolutional network proposed by Redmon 
and Farhadi (2018). It is an efficient and simple detector 
in which object detection is considered as a regression 
problem using anchor boxes and three scales for prediction. 
YOLOv3 is characterised by a Darknet-53 backbone and a 
Feature Pyramid Network (FPN) of three scales. The 
structure of YOLOv3 is shown in Fig. 3. The YOLOv3 object 
detector uses an element-wise sum for high, medium, and 
low-level feature integration. FPN is a topology in which 
two opposite operations in the spatial dimension occur; to 
decrease and then expand the feature map. This step is a 
repeated mechanism that allows detectors to learn objects 
of different sizes. To perform object detection in YOLOv3, a 
large detection block 76 × 76 is used for detecting large 
objects, and a small detection block of 19 × 19 is used for 
small objects. However, the efficiency of this method 
decreases in multi-class and imbalanced datasets. 

Darknet-53 feature extractor

YOLOv3 use the Darknet-53 network structure, as shown 
in Fig. 4. This network structure contains 53 convolution 
layers ð3ð2 + 1 × 2 + 1 + 2 × 2 + 1 + 8 × 2 + 1 + 8 × 2 + 1 + 4 × 
2 + 1 = 53ÞÞ, and five pooling layers to overcome overfitting 
problems. After each convolutional layer, batch normalisa-
tion and dropout layers were added. Darknet-53 adopts the 
residual neural network of five residual blocks. In YOLOv3, 
network depth increases using residual units to avoid 
gradient disappearance. 

YOLOv3-AFF model

In the Pest24 dataset, insects are considered tiny objects in the 
images. YOLOv3 adopts a multi-scale strategy and feature 
pyramid network to predict objects on three different 

Type Filters Size Output 
Convolutional 32 3 × 3/1 416 × 416 
Convolutional 64 3 × 3/2 208 × 208 

Convolutional 32 2 × 1/1 
1× Convolutional 64 3 × 3/2 

Residual 208 × 208 

Convolutional 128 3 × 3/2 104 × 104 

Convolutional 64 1 × 1/1 
2× Convolutional 128 3 × 3/2 

Residual 104 × 104 

Convolutional 256 3 × 3/2 52 × 52 

Convolutional 128 1 × 1/1 
8× Convolutional 256 3 × 3/2 

Residual 52 × 52 

Convolutional 512 3 × 3/2 26 × 26 

Convolutional 256 1 × 1/1 
8× Convolutional 512 3 × 3/2 

Residual 26 × 26 

Convolutional 1024 3 × 3/2 13 × 13 

Convolutional 512 1 × 1/1 
8× Convolutional 1024 3 × 3/2 

Residual 13 × 13 

Fig. 4. Darknet-53 network structure.

scales, enabling YOLOv3 to handle small, medium, and 
large object detection problems. However, when multiple 
object sizes are present in one image, some image features 
can be lost during the successive resizing at each scale. As a 
result, the feature maps may not contain features of some 
objects of different sizes affecting the detection accuracy. 
Therefore, to improve the detection accuracy, we integrated 
an adaptive feature fusion technique to reuse features at 
different scales in the YOLOv3 network. 

Adaptive feature fusion (AFF)
Object detectors such as YOLOv3 and RetinaNet use FPN to 

perform multi-layer feature learning and element-wise sum or 
concatenation for multi-level feature integration. However, for 
FPN-based single-stage detectors, the inconsistency between 
different feature scales represents the main limitation. To 
overcome this issue, it is necessary to fully use the semantic 
information of different feature-levels. For that, we deployed 
an adaptive feature fusion model (Liu et al. 2019b). The idea of 
this method is as follows: modify the up and down-sampling 
strategies used in the original YOLOv3 to allow the detector 
to learn the spatial weight at different scales. This approach 
consists of two main steps: identical re-scaling and adaptive 
fusion. Fig. 5 illustrates the adaptive feature fusion module. 

Re-scaling. For the YOLOv3 framework, the number of 
channels and the resolution of features is different at three 
levels l ∈ ð1,2,3Þ. We denote x1, the feature of resolution at 
each level. For up-sampling, 1 × 1 convolutional layer is 
applied. As a result, the number of channels at level l as 
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Stride 32 

Stride 16 

Stride 8 

1 

2 

3 

Predict 

Predict 

Predict 

Fig. 5.

1→3 3 2→3a β3 3→3x x x

Illustration of the adaptive fusion feature module integration with FPN on YOLOv3.

γ3 

well as features are compressed. After that, the feature 
resolutions are up-scaled respectively with interpolation. 
The next step is applying a 3 × 3 convolution layer with a 
stride of two for down-sampling at a 0.5 ratio. This will 
simultaneously change the number of channels and the 
resolution of features. 

Adaptive fusion. After feature resizing from level l to level 
n, feature fusion at each corresponding level l can be 
formulated as follow: 

yl al · x1→l + βl · x2→l + γl · x3→l (1)ij = ij ij ij ij ij ij 

x1→l x2→l x3→lHere: , , and represent the feature mapsij ij ij 
from three layers at levels (1, 2, 3) corresponding to strides 
(32, 16, 8). al βl and γl refer to the spatial weightsij, ij ij 

calculated using the activation function. 
We use the method introduced by (Wang et al. 2019) to  

force alij + βlij + γlij = 1 and define 

λl 

al 
e aij 

(2)ij = 
λl λl λl aij βij γije + e + e 

Where: λl , λl βij , λ
l are the control parameters used to defineaij γij 

the spatial weights alij, βijl and γlij respectively. 
After calculating feature maps y1, y2, and y3, the same 

YOLOv3 pipeline performs object detection. 

Evaluation and results

Implementation and experiment

We evaluated the insect detection accuracy on the Pest24 
dataset using the YOLOv3-AFF on an Ubuntu 20.04 

operating system. We used the PyTorch framework with 
CUDA 11.1. The model was trained on two GPUs and 
120 epochs for training. We applied the cosine learning 
schedule from 0.001 to 0.00001. All experiments were 
performed on the bounding box detection track on the 
images. The dataset was divided into training, validation, 
and testing sets of: 18 344, 5077 and 7600 respectively. We 
kept the distribution for other detectors at 12 701, 5077, 
and 7600. We also evaluated insect detection performance on 
single-shot state-of-the-art object detectors SSD, YOLOv3, and 
RetinaNet; and two-stage object detectors, Faster-RCNN, 
Cascade-RCNN and Fast-RCNN. Table 2 summarises the 
configurations of the experimental environments. 

Detection results and discussion

The detection accuracy on the dataset was evaluated using 
different object detectors YOLOv3-AFF, YOLOv3, SSD, 
Faster-RCNN, Cascade-RCNN, Fast-RCNN and RetinaNet. 
We trained each of these methods on the training sets and 
tested them on the test set. Also, the hyper-parameters for 
object detectors have been optimised for better detection 
accuracy as follows: varying the base_size of (2, 4, 8, 16) 
for Faster-RCNN, and the anchor_scales of (2, 4, 8) for 

Table 2. Configurations of experimental hardware environment.

Parameters Configuration

CPU Intel i9-9900x

GPUs TITAN RTX + GeForce GT

Accelerated environment CUDA 11.1, cuDNN 8.0.5

Framework PyTorch 1.7

Operating system Ubuntu 20.04

Training framework Darknet-53
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Table 3. Detection performance in terms ofmAP (%) and frames per
second (fps) numbers in bold indicate the highest fps and mAP.

Method Backbone Batch size fps mAP (%)

SSD300 VGG 12 43.0 50.52

Faster-RCNN ResNet-152 64 11.1 51.72

Cascade-RCNN ResNet-101 12 9.5 59.97

RetinaNet ResNet-50-FPN 64 6.9 63.01

Fast-RCNN ResNet-101-FPN 64 31.3 54.68

YOLOv3 Darknet-53 32 68.9 61.82

YOLOv3-AFF Darknet-53 32 63.8 72.10

Cascade-RCNN. For the one-stage detector SSD, we adjusted 
smin and smax parameters that define the anchor_size on each 
feature map to [(0.1–0.7), (0.1–0.8), (0.2–0.7), (0.2–0.9)]. 
The regulator hyper-parameter that controls two task losses 
for Fast-RCNN was set to =1, for RetinaNet, we used three 
ratios [0.006, 1.65, 1.53] with bash_size = 16. We used the 
k-means algorithm in YOLOv3 and YOLOv3-AFF to 
optimise the scale_range. 

0.7 
(a) 0.6 (b) 

0.6 0.5 

0.5 

Evaluation metrics
We use the mAP (Mean Average Precision) evaluation 

criteria to evaluate the detection accuracy. The mAP can be 
obtained using each class’s AP (Average Precision) as 
mentioned in the Eqn 6. By using the TP (True Positive), FP 
(False Positive), and FN (False Negative), precision and 
recall were calculated following Eqns 3 and 4, respectively. 

TP
PrecisionðPÞ = (3)

TP + FP 

TP
RecallðRÞ = (4)

TP + FN 

After calculating the precision and recall, the Average 
Precision (AP) represents the area under the precision– 
recall curve and can be calculated as follows: 
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Fig. 6. Evolution of mAP with the number of epochs. (a) YOLOv3-AFF, (b) YOLOv3, (c) Cascade- RCNN, (d) SSD, (e) Fast-RCNN,
(f ) RetinaNet.
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mAP score is then calculated by taking the AP of each class 
as following: 

k = 1 X
1

mAP = APk (6)
2 

k = n 

Where: n represents the number of classes, and APk 
represents AP of class k. 

Comparison with the state-of-the-art methods
We evaluated the proposed YOLOv3-AFF model on the 

dataset and compared the detection accuracy and performance 
with other state-of-the-art methods in Table 3. 

The experiment results demonstrate that our approach 
achieved the best detection accuracy, with mAP of 72% 
compared to YOLOv3 with 61.82%, Cascade-RCNN 59.97%, 
Faster-RCNN 51.72%, SSD 50.52%, Fast-RCNN 53.68%, and 
RetinaNet with 63.01%. The default YOLOv3 has the fastest 
processing speed, with 68.9 frames per second (fps). Our 
method has 63.8 fps, which represents a good processing 
speed compared to other state-of-the-art models. Fig. 6 
shows the progress of mAP scores with the number of 

training epochs, comparing four methods. Fig. 6a shows 
that the mAP score of YOLOv3-AFF stabilised after 30 epochs 
with the highest mAP reached after 100 epochs. Fig. 6b 
(YOLOv3) shows stabilisation after 90 epochs, similar to 
Fig. 6d (SSD). In Fig. 6c (Cascade-RCNN), stabilisation 
occurred after 100 epochs, which is similar to YOLOv3-AFF 
(Fig. 6a). We have evaluated the network processing time 
by comparing the fps of each method. Table 3 shows 
computational speed results. The YOLOv3 method achieved 
the fastest processing time of 68.9 fps, and the YOLOv3-AFF 
had 63.8 fps. The processing speed of our method is slightly 
slower than the YOLOv3 due to the integration of the 
adaptive feature module. The multiple resizing of images in 
our method increases the number of pixels on images, and 
hence, the processing time becomes longer. 

To demonstrate the efficiency of our model, we calculated 
APs for each of the 24 insect species at different relative 
scales. Table 4 summarises the test results. Also, we 
further validated YOLOv3-AFF performance by conducting 
insect detection experiments on the selected insects of 
small average scale and insects with the lowest distribu-
tion in the Pest24 dataset. We compared APs of each 

Table 4. APs of 24 classes of insects by different evaluation methods. Numbers in bold indicates the highest APs.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SSD300 0.1 38.3 49.4 63.1 78.9 66.0 46.5 59.2 34.2 56.4 73.7 0.3 35.2 30.2 33.6 55.1 3.8 51.4 85.1 93.3 94.7 42.8 66.6 53.3

Faster-RCNN 0.0 38.5 51.7 72.0 81.3 66.8 48.3 68.9 35.5 64.5 81.9 0.0 48.8 43.3 46.5 62.9 4.8 49.2 79.1 83.8 95.7 44.8 58.1 31.2

Cascade-RCNN 4.7 58.5 65.8 75.6 88.3 77.8 67.1 67.1 46.6 62.3 84.6 3.9 53.3 50.5 47.5 57.7 2.7 48.2 89.0 91.9 97.0 51.2 80.4 64.0

RetinaNet 3.1 48.9 66.3 80.7 93.2 76.9 72.8 77.0 50.2 78.1 85.3 0.8 66.4 45.9 48.9 77.6 3.9 63.9 90.7 94.2 98.3 45.9 77.7 64.0

Fast-RCNN 1.1 44.5 53.7 71.8 85.0 67.9 53.1 70.2 34.8 69.8 83.0 0.7 52.5 44.9 50.1 63.0 4.7 53.5 82.0 86.1 96.9 44.9 61.3 35.0

YOLOv3 0.6 51.7 72.1 82.9 91.7 80.7 68.9 76.8 52.5 75.9 88.7 1.6 60.4 51.5 50.2 74.2 1.5 61.4 93.3 97.3 98.6 40.0 79.7 73.6

YOLOv3-AFF 5.9 76.4 86.1 85.6 90.4 84.9 90.1 75.2 74.1 81.6 93.7 5.1 65.0 67.9 61.5 71.3 4.3 77.6 94.8 97.0 99.1 69.8 87.2 77.1

Fig. 7. APs (%) of different detection methods on insects of small average scale (a), and insects of low distributions on dataset images (b).
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selected insect; Fig. 7 shows that YOLOv3-AFF achieved 
higher accuracy among other networks especially for 
insects with small scale. 

Additionally, we selected several images from YOLOv3 and 
the proposed YOLOv3-AFF, as shown in Fig. 8. We show that 
the category and location of insects are correctly detected in 

Fig. 8. Bounding box detection on images; Left: default YOLOv3, Right: YOLOv3 AFF (our method). On top of
bounding boxes: insect index on the left, detection accuracy the right.
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(a) (b) (c) 

Fig. 9. Examples of wrong detection: (a) missing detection, (b) complex background and illumination, (c) false detection (red squares).

multi-scale images with small insects. However, as shown 
in Fig. 9, false and missing detection occurs in some insect 
images, especially with similar or overlapped insects. 

Conclusion

This paper presents an improved YOLOv3 object detector to 
detect insects from small-object images in the Pest24 dataset. 
We improved the multi-scale feature detection of YOLOv3 by 
integrating an adaptive feature fusion module. Experimental 
results show a significant improvement in insect detection 
accuracy compared to other state-of-art object detectors: SSD, 
Faster-RCNN, Cascade-RCNN, RetinaNet, Fast-RCNN, and 
YOLOv3. Additionally, the integrated adaptive feature fusion 
module has minimal impact on the processing speed (fps) 
compared to default YOLOv3. The proposed YOLOv3-AFF 
demonstrates promising results for small insects and multi-
class detection while optimising processing speed. Further, 
it is applicable for real-time automatic insect detection from 
images on a large multi-scale agricultural pest dataset. 
However, the model’s performance was poorer for images 
containing overlapping small insects. Also, colour and shape 
similarity between insects caused some mis-detection, e.g. the 
species of Mamestra brassicae and Scotogramma trifolli 
Rottemberg have similar wing shapes and colour, which 
confuses the network during the feature extraction stage. 
Another challenge is the scale difference between insects on 

the same images, e.g. Gryllotalpa orientalis is 28 times larger 
than Nilaparvata lugens. This size difference increases 
the imbalance between instances in the dataset, which 
decreases the insect detection accuracy. 

In future, we plan to address the detection of overlapped 
insects, insects with high similarity, and scale invariant. 
In addition, more research is required on the feature 
extraction strategy to increase the accuracy of detection in 
challenging conditions. 
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