Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Selecting soybeans for sulfonylurea herbicide tolerance: a comparative proteomic study of seed germinations

Xingwang Yu A B , Aijun Yang A C and Andrew T. James A
+ Author Affiliations
- Author Affiliations

A CSIRO Agriculture, 306 Carmody Road, St Lucia, Qld 4067, Australia.

B Current address: Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA.

C Corresponding author. Email: Aijun.Yang@csiro.au

Crop and Pasture Science 68(1) 27-32 https://doi.org/10.1071/CP16272
Submitted: 22 July 2016  Accepted: 14 December 2016   Published: 11 January 2017

Abstract

Sulfonylurea herbicides have attracted renewed interest as an alternative for weed management and control of weed resistance in soybean production. In this proteomic study, we compared changes in the protein profiles in 10-day-old seedlings from a simple roll-paper germination method treated with 0.1 µm metsulfuron methyl (MSM), a compound from the sulfonylurea family. Seeds from susceptible or tolerant soybeans, four lines each, were treated with 0, 0.01, 0.1, 1 or 10 µm MSM and the number of normal seeds germinating was counted after 10 days. MSM at ≥0.1 µm significantly reduced normal germination in the sulfonylurea-susceptible group. Comparative proteomic analysis of the proteins extracted from the germinations treated with 0 or 0.1 µm MSM revealed a much greater number of proteins affected in the sulfonylurea-susceptible genotype than the tolerant type. From a total 227 protein spots with significant differential (>2-fold) accumulation, 142 unique proteins were identified. Functional analysis revealed that about one-third of these proteins were associated with metabolism, followed by energy (24.3%), defence–stress response (22.9%), and protein synthesis and storage (16.7%). Sulfonylurea herbicides, specifically MSM, greatly affected these metabolic pathways in the susceptible genotype through changed accumulation of many enzymes and proteins.


References

Afroz A, Hashiguchi A, Khan MR, Komatsu S (2010) Analyses of the proteomes of the leaf, hypocotyl, and root of young soybean seedlings. Protein and Peptide Letters 17, 319–331.
Analyses of the proteomes of the leaf, hypocotyl, and root of young soybean seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFaitLo%3D&md5=f525851373fb144e247c65fe4e1418bdCAS |

Al-Khatib K, Tamhane A (1999) Dry pea (Pisum sativum L.) response to low rates of selected foliar- and soil-applied sulfonylurea and growth regulator herbicides. Weed Technology 13, 753–758.

Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W, Drost L, Ridley P, Hudson SA, Patel K, Murphy G, Piffanelli P, Wedler H, Wedler E, Wambutt R, Weitzenegger T, Pohl TM, Terryn N, Gielen J, Villarroel R, De Clerck R, Van Montagu M, Lecharny A, Auborg S, Gy I, Kreis M, Lao N, Kavanagh T, Hempel S, Kotter P, Entian KD, Rieger M, Schaeffer M, Funk B, Mueller-Auer S, Silvey M, James R, Montfort A, Pons A, Puigdomenech P, Douka A, Voukelatou E, Milioni D, Hatzopoulos P, Piravandi E, Obermaier B, Hilbert H, Dusterhoft A, Moores T, Jones JDG, Eneva T, Palme K, Benes V, Rechman S, Ansorge W, Cooke R, Berger C, Delseny M, Voet M, Volckaert G, Mewes HW, Klosterman S, Schueller C, Chalwatzis N, Project EUAG (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488.
Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVCjtr4%3D&md5=46e9c489394da29ff652afb645fbd695CAS |

Beyer JEMR, Duffy MF, Hay JV, Schlueter DD (1988) Sulfonylureas. In ‘Herbicides: chemistry, degradation and mode of action’. (Eds PC Kearney, DD Kaufmann) pp. 117–189. (Dekker: New York)

Brown HM, Neighbors SM (1987) Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity. Pesticide Biochemistry and Physiology 29, 112–120.
Soybean metabolism of chlorimuron ethyl: physiological basis for soybean selectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjtlGnsQ%3D%3D&md5=6c50bd70fc4b9b5eb098c575fd566a9cCAS |

Brown HM, Wittenbach VA, Forney DR, Strachan SD (1990) Basis for soybean tolerance to thifensulfuron methyl. Pesticide Biochemistry and Physiology 37, 303–313.
Basis for soybean tolerance to thifensulfuron methyl.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitF2k&md5=c0de719fba22729ec1b94ecd252eb081CAS |

Chaleff RS, Mauvais CJ (1984) Acetolactate synthase is the site of action of 2 sulfonylurea herbicides in higher-plants. Science 224, 1443–1445.
Acetolactate synthase is the site of action of 2 sulfonylurea herbicides in higher-plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXks1OksLw%3D&md5=6c9b08d85d1b140c328f810313fd42d3CAS |

James AT, Yang A (2016) Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties. Food Chemistry 194, 284–289.
Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12rtrvO&md5=70fd57c95cbc0048294c05c5ee9b98c7CAS |

Moerkerk MR (1999) Chemical control of bedstraw (Galium tricornutum Dandy) in wheat, barley, field peas, chickpeas and faba beans in southern Australia. Plant Protection Quarterly 14, 24–29.

Natarajan S, Xu CP, Caperna TJ, Garrett WA (2005) Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins. Analytical Biochemistry 342, 214–220.
Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvVWrs7k%3D&md5=2d71720d0b330ae7f3d4386786ad3c1fCAS |

Oldach KH, Peck DM, Cheong J, Williams KJ, Nair RM (2008) Identification of a chemically induced point mutation mediating herbicide tolerance in annual medics (Medicago spp.). Annals of Botany 101, 997–1005.
Identification of a chemically induced point mutation mediating herbicide tolerance in annual medics (Medicago spp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVaiu7c%3D&md5=7f7d15573e23c4de66fd63cffd91d3c7CAS |

Pratap S, Mashiat A (2004) Efficacy of metsulfuron-methyl on weeds in wheat and its residual effects on succeeding soybean crop grown on vertisols of Rajasthan. Indian Journal of Weed Science 36, 34–37.

Ray TB (1986) Sulfonylurea herbicides as inhibitors of amino acid biosynthesis in plants. Trends in Biochemical Sciences 11, 180–183.
Sulfonylurea herbicides as inhibitors of amino acid biosynthesis in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XktVajurw%3D&md5=59d2797d66473fae9903381c1957cf14CAS |

Reddy KN, Whiting K (2000) Weed control and economic comparisons of glyphosate-resistant, sulfonylurea-tolerant, and conventional soybean (Glycine max) systems. Weed Technology 14, 204–211.
Weed control and economic comparisons of glyphosate-resistant, sulfonylurea-tolerant, and conventional soybean (Glycine max) systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1WhtLo%3D&md5=97e35e9ee5b1661b8144521c2ea783b0CAS |

Saari LL, Cotterman JC, Primiani MM (1990) Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiology 93, 55–61.
Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFeht7o%3D&md5=6995be153a1d0ab43fc1c5a80969067cCAS |

SAS (1997) ‘SAS/STAT Software: changes and enhancements through release 6.12.’ (SAS: Cary, NC, USA)

Schmitzer PR, Eilers RJ, Cseke C (1993) Lack of cross-resistance of imazaquin-resistant xanthium-strumarium acetolactate synthase to flumetsulam and chlorimuron. Plant Physiology 103, 281–283.
Lack of cross-resistance of imazaquin-resistant xanthium-strumarium acetolactate synthase to flumetsulam and chlorimuron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVemtLw%3D&md5=a09e6cf4ba8d3170a8e05c3dc93a2f5eCAS |

Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular & Cellular Proteomics 6, 1638–1655.
The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGqsr3N&md5=ec1bb9a356ee2fc7e1f9170e7f33518eCAS |

Yang A, Yu X, Zheng A, James AT (2016) Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4. Food Chemistry 210, 148–155.
Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVGhsrg%3D&md5=0761a5b1d1137231f95ea24dcae70d26CAS |

Yu X, James AT, Yang A, Jones A, Mendoza-Porras O, Bétrix CA, Ma H, Colgrave ML (2016) A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress. Crop & Pasture Science 67, 528–540.
A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptVKlsL4%3D&md5=cd49531a8d19a06f7db6546cb061c439CAS |