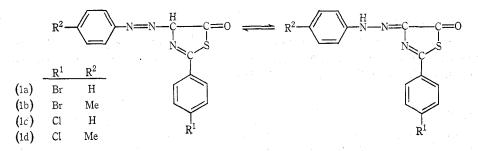
Synthesis of 2-Aryl-4-arylazo-2-thiazolin-5-ones and their Reaction with Aromatic Amines

A. Mohamed Khalil,^{A,B} Ibrahim I. Abd El-Gawad^{A,B} and Hesien M. Hassan^A

^A Chemistry Department, Al-Mansoura Faculty of Science,
Al-Mansoura University, A.R.E. (Egypt).
^B Present address: Department of Chemistry, Faculty of Science,


King Abdulaziz University, P.O. Box 1540, Jeddah, Saudi Arabia.

Abstract

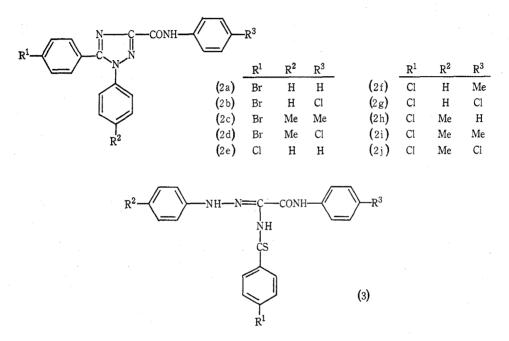
2-Aryl-4-arylazo-2-thiazolin-5-ones are prepared by a coupling reaction between thioaroylglycine and the appropriate diazonium salt. Their heterocyclic ring is readily opened by the action of primary aromatic amines in acetic acid containing a catalytic amount of sodium acetate with the formation of 1.5, N_{z} -triaryl-1*H*-1,2,4-triazole-3-carboxamides.

Although many substituted thiazolones and their reactions with a variety of reagents have been described in the literature,¹⁻⁵ the 2-aryl-4-arylazo-2-thiazolin-5-ones have not been reported.

In this investigation the 2-aryl-4-arylazo-2-thiazolin-5-ones (1a-d) were prepared, similarly to the corresponding 2-aryl-4-arylazo-2-oxazolin-5-ones,⁶ by a coupling reaction between thioaroylglycine and the appropriate diazonium salt in cold acetic anhydride containing freshly fused sodium acetate.

The structures (1a-d) were established by analytical results and by i.r. measurements which showed stretching frequencies at 1700 cm⁻¹ characteristic for the carbonyl group of the thiazolone ring and at 3300 cm⁻¹ characteristic for an NH group. The i.r. spectra do not reveal any N=N band around 1540 cm⁻¹, which suggests that the hydrazone structure rather than the alternative azo structure predominates.

- ⁴ Johnson, T. B., and Nicolet, B. H., J. Am. Chem. Soc., 1912, 34, 1048.
- ⁵ Khalil, A. M., Abd El-Gawad, I. I., and Hammouda, M., Aust. J. Chem., 1974, 27, 2035.
- ⁶ Khalil, A. M., Abd El-Gawad, I. I., and Hassan, H. M., Aust. J. Chem., 1974, 27, 2509.


¹ Rath, P. C., Tripathy, P. B., and Rout, M. K., J. Indian Chem. Soc., 1964, 41, 107.

² Filler, R., and Rao, Y. S., J. Org. Chem., 1962, 27, 3730.

³ Knott, E. B., U.S. Pat. 2,743,273 (Apr. 1956).

In continuation of the previous study,^{5–8} the present communication reports the reaction of 2-aryl-4-arylazo-2-thiazolin-5-ones (1a–d) with primary aromatic amines in acetic acid solution and in the presence of freshly fused sodium acetate. An evolution of hydrogen sulphide was observed and the corresponding $1,5,N_{\alpha}$ -triaryl-1*H*-1,2,4-triazole-3-carboxamides (2a–j) were obtained.

The identity of compounds (2a-j) was established by comparison with authentic samples prepared by reaction of 2-aryl-4-arylazo-2-oxazolin-5-ones with the appropriate amine in acetic acid containing freshly fused sodium acetate.^{6,9}

Attempts to isolate the possible intermediates of type (3) by treatment of 2-aryl-4arylazo-2-thiazolin-5-ones with amines in ethanol were unsuccessful; only the corresponding 1,2,4-triazoles (2a-j) were obtained.

Experimental

Analytical data were determined by the Microanalytical Unit, Cairo University. Infrared spectra were recorded on a SP 1000 Pye-Unicam spectrophotometer. All the melting points are uncorrected.

2-Aryl-4-arylazo-2-thiazolin-5-ones (1a-d)

To a stirred solution of thioaroylglycine (0.1 mol) in acetic anhydride (30 ml) containing freshly fused sodium acetate (1 g) in an ice-salt bath was added slowly a diazonium solution. Stirring was then continued for 15 min at 0°C. The stirred mixture was then allowed to attain room temperature.

The crude product was almost completely precipitated within 1 h. It was filtered, dried by suction and recrystallized from acetone to give 2-aryl-4-arylazo-2-thiazolin-5-ones (1a-d) (Table 1).

⁷ Islam, A. M., Khalil, A. M., and Abd El-Gawad, I. I., Aust. J. Chem., 1973, 26, 827.

⁸ Islam, A. M., Khalil, A. M., and El-Houseni, M. S., Aust. J. Chem., 1973, 26, 1701.

⁹ Khalil, A. M., and Abd El-Gawad, I. I., unpublished data.

$1,5,N_{\alpha}$ -Triaryl-1H-1,2,4-triazole-3-carboxamides (2a-j)

A mixture of the 2-aryl-4-arylazo-2-thiazolin-5-one (1a-d) (0.01 mol) and the appropriate primary aromatic amine (0.01 mol) in acetic acid (50 ml) containing freshly fused sodium acetate (1.5 g) was heated under reflux for 2 h. The mixture was cooled, and the crude product was collected by suction filtration. Recrystallization from ethanol gave the substituted amides (2a-j) as white crystals (Table 2).

Table 1. 2-Aryl-4-arylazo-2-thiazolin-5-ones (1a-d)

Com-	Colour	M.p.	Yield	Molecular	Found (%)			Calc. (%)		
pound		(°C)	(%)	formula	С	Η	Ν	C	н	Ν
(1a)	orange	152	82	C ₁₅ H ₁₀ BrN ₃ OS	52.0	2.5	12.2	52.0	2.8	12.2
(1b)	orange	158	85	$C_{16}H_{12}BrN_3OS$	51 · 2	3 · 1	$11 \cdot 1$	51 · 3	3.2	11.2
(1c)	yellow	165	80	C15H10ClN3OS	56.9	3.0	13.2	56.9	3.2	$13 \cdot 3$
(1d)	yellow	155	82	$C_{16}H_{12}ClN_3OS$	58.1	3 · 5	12.6	58.2	3.6	12.7

Table 2. 1,5	N_x -Triaryl-1 <i>H</i> -1,2,4-triazole-3-carboxamides
--------------	--

Com-	M.p.	Yield	Molecular	Found (%)			Calc. (%)		
pound	(°Č)	(%)	formula	С	Η	N	С	Η	N
(2a)	205	85	C ₂₁ H ₁₅ BrN ₄ O	60.4	3.3	13.2	60.4	3.6	13.4
(2b)	192	75	C ₂₁ H ₁₄ BrClN ₄ O	55·2	3.0	12.0	55.6	3 · 1	$12 \cdot 1$
(2c)	170	92	C23H19BrN4O	61 · 4	4.0	12.3	61 · 8	4 · 3	12.5
(2d) ^A	185	85	$C_{22}H_{16}BrClN_4O$	54.6	3 · 4	11.5	54.6	3.3	11.6

^A Complete details for the remaining compounds (2e-j) have been published.⁶

The melting points of the above products (2a-j) were undepressed on admixture with authentic samples prepared by the reaction of 2-aryl-4-arylazo-2-oxazolin-5-ones with the appropriate amine in acetic acid containing fused sodium acetate.^{6,9}

The attempted preparation of arylcarboxamides of α -arylthiocarboxamido- α -arylhydrazonoacetic acid (3) by heating under reflux a mixture of 2-aryl-4-arylazo-2-thiazolin-5-ones (1a–d) (0 01 mol in each case) and in primary aromatic amines (0 01 mol), in ethanol (30 ml) for 2 h, was unsuccessful. The products were identified as (2a–j), with correct elementary analyses, m.p. and m.m.p.

Manuscript received 17 November 1975