
THE CONFIGURATION OF DIPHENYLENE DIOXIDE (DIBENZO-p-DIOXIN)

By M. J. ARONEY,* GEORGINA M. HOSKINS,* R. J. W. LE FÈVRE,* R. K. PIERENS,* and D. V. RADFORD*

[Manuscript received February 4, 1969]

Among heterocyclic compounds of general formula (I) the degree of folding about the $X \ldots Y$ line is dependent on the nature of the atoms X and Y.¹ Recently

we have undertaken a systematic study of the preferred solute configurations and conformations of such molecules by analysis of their electric dipole moments and molar Kerr constants.^{2,3} From these data estimates of the dihedral angle ϕ may be obtained provided the anisotropic electron polarizabilities of the component units

 C_6H_4 , C_{ar} -X, and C_{ar} -Y are known.⁴ The C_{ar} -X bond polarizabilities[†] differ considerably from the corresponding C (aliphatic)-X parameters, e.g. $b_L(C_{ar}-S) = 4 \cdot 74$, $b_T(C_{ar}-S) = 0 \cdot 60$, $b_V(C_{ar}-S) = 1 \cdot 06$ (in thianthren)⁵ whilst $b_L(C-S) = 1 \cdot 88$, $b_T(C-S) = b_V(C-S) = 1 \cdot 69$ (in dimethyl sulphide).⁶ The purpose of the present work is to specify the solution-state configuration of diphenylene dioxide (dibenzo-*p*-dioxin) (I; X = Y = 0) and thence to derive, from the experimental molar Kerr constant, the principal polarizability semi-axes for the C_{ar} -O bond appropriate to this type of molecule.

Experimental

Diphenylene dioxide (m.p. 119–120° from ethanol) was prepared from o-chlorophenol, anhydrous potassium carbonate, and copper powder using the method of Gilman and Dietrich.⁷

The apparatus, techniques, methods of calculation, and symbols have previously been described.⁸⁻¹¹ Experimental results for solutions are shown in Tables 1 and 2.

- * School of Chemistry, University of Sydney, N.S.W. 2006.
- \dagger Polarizabilities are quoted throughout in 10^{-24} c.c. units.
- ¹ Hosoya, S., Acta crystallogr., 1963, 16, 310.
- ² Aroney, M. J., Le Fèvre, R. J. W., and Saxby, J. D., J. chem. Soc., 1965, 571.
- ³ Aroney, M. J., Hoskins, G. M., and Le Fèvre, R. J. W., J. chem. Soc. (B), 1968, 1206.
- ⁴ Le Fèvre, R. J. W., Adv. phys. org. Chem., 1965, 3, 1.
- ⁵ Le Fèvre, R. J. W., and Saxby, J. D., J. chem. Soc. (B), 1966, 1064.
- ⁶ Aroney, M. J., Le Fèvre, R. J. W., and Saxby, J. D., J. chem. Soc., 1963, 1167.
- ⁷ Gilman, H., and Dietrich, J. J., J. Am. chem. Soc., 1957, 79, 1439.
- ⁸ Le Fèvre, R. J. W., "Dipole Moments." 3rd Edn. (Methuen: London 1953.)
- ⁹ Le Fèvre, C. G., and Le Fèvre, R. J. W., Ch. XXXVI in "Physical Methods of Organic Chemistry." (Ed. A. Weissberger.) 3rd Edn. (Interscience: New York 1960.)
- ¹⁰ Le Fèvre, R. J. W., and Sundaram, K. M. S., J. chem. Soc., 1962, 1494.

¹¹ Le Fèvre, R. J. W., and Sullivan, E. P. A., J. chem. Soc., 1954, 2873.

Aust. J. Chem., 1969, 22, 2243-5

SHORT COMMUNICATIONS

Discussion

Neither the present, nor the previously reported¹²⁻¹⁵ measurements of dielectric constants can be used to distinguish dipole moments in the range from 0 to 0.63 D for diphenylene dioxide, since the atomic polarization component in $_{\rm D}P$ cannot be estimated with certainty, and $_{\rm O}P$ may have possible values from 0 to 8.2 c.c. An

		TABLE	1		
INCREMENTA	L KERR C	ONSTANT	s, DIELE	CTRIC CO	NSTANTS,
DENSITIES,	REFRACTIV	E INDEX	ES, AND	DIELECT	RIC LOSS
	TANGENTS	S OF SOL	UTIONS A	т 25°	
Dia	henylene Di	ionida in	Canhon T	atugahlani	
-	0				
$10^5 w_2$	740	1173	1738	2462	3143
$10^{10}\Delta B$	17	25	34	51	63
$10^4\Delta\epsilon$	66	106	160	225	284
$-10^{5}\Delta d$	328	507	747	1059	1356
$10^4\Delta n$	15	24	40	54	72
	Diphenyl	ene Diox	ide in Ber	nzene	
$10^{5}w_{2}$	686	1416	2346	2887	3430
$10^{10}\Delta B$	8	15	22	27	33
$10^{4}\Delta\epsilon$	33	70	114	141	168
$10^{5}\Delta d$	174	361	596	732	871
$10^4 \Delta n$	6	13	22	26	31
$10^{s}\Delta tan \delta^{a}$		$0 \cdot 00$		0.17	$0 \cdot 40$
	Diphenylen	ne Dioxid	e in Cyclo	hexane	
$10^{5}w_{2}$	2137	4263			
10 ³ Δtan δ ^a	$0 \cdot 00$	$0 \cdot 00$			

^a Measurements at 9400 MHz.

TABLE 2

DIELECTRIC POLARIZATIONS, DIPOLE MOMENTS, AND MOLAR KERR CONSTANTS OF DIPHENYLENE DIOXIDE

(from observations on solutions at 25°)										
${ m Sol}$ -vent	$\alpha \epsilon_1$	β	γ	δ	${}_{\infty}P_{2}$ (c.c.)	$R_{ m D}$ (c.c.)	$_{(\mathrm{D})^{a}}^{\mu}$	$10^{12}{}_{\infty}({}_{ m m}K_2)$		
CCl ₄	0.909	-0.273	$0 \cdot 152$	$24 \cdot 9$	60.7	$53 \cdot 6$	0.46	$42(\pm 3)$		
C_6H_6	0.489	0.291	0.060	$2 \cdot 39$	$61 \cdot 5$	$53 \cdot 2$	$0\cdot 52$	$39(\pm 3)$		

^a Calculated on the basis that $_{\rm D}P = 1.05R_{\rm D}$.

X-ray study by Wood, McCale, and Williams,¹⁶ in 1941, showed, using symmetry considerations, that the molecule is most likely planar in the crystal state. The existence of small, real moments can be detected by microwave absorption measure-

¹² Bennett, G. M., Earp, D. P., and Glasstone, S., J. chem. Soc., 1934, 1179.

¹³ Higasi, K., Sci. Papers Inst. Phys. Chem. Res. Tokyo, 1941, 38, 331.

¹⁴ Higasi, K., and Uyeo, S., J. chem. Soc. Japan, 1941, 62, 396.

¹⁵ Leonard, N. J., and Sutton, L. E., J. Am. chem. Soc., 1948, 70, 1564.

¹⁶ Wood, R. G., McCale, C. H., and Williams, G., Phil. Mag., 1941, 31, 115.

SHORT COMMUNICATIONS

ments.¹⁷ Accordingly, solutions of diphenylene dioxide in benzene and in cyclohexane have been examined; the results are shown in Table 1. The observed incremental loss tangents $\Delta \tan \delta$ are very small in benzene and zero in cyclohexane. The values in cyclohexane are the more significant since there is less likelihood of solute-solvent interactions. We conclude therefore that diphenylene dioxide is in fact non-polar and hence has a configuration indistinguishable from planar. The experimental $_{\infty}(_{m}K_{2})$ values are qualitatively in accord with a non-polar structure in which the anisotropy term θ_{1} must be positive while the dipole term θ_{2} is zero; the latter would have a negative value for $\mu \neq 0$ and $140^{\circ} < \phi < 180^{\circ}$.

From the molar Kerr constant in carbon tetrachloride we can extract estimates of the anisotropic polarizabilities of the C_{av} -O bonds appropriate for this type of molecule on the basis that (a) diphenylene dioxide is planar and (b) the angles $C_{ar}-C_{ar}-O$ are 120°. Since scattered light data are not available the principal molecular polarizabilities (b_i) cannot be directly obtained. We therefore adopt the alternative procedure of finding that set of C-O bond semi-axes which, in combination with the $C_{e}H_{4}$ group values³ $[b_{t}(C_{e}H_{4}) = b_{T}(C_{e}H_{4}) = 9.85, b_{V}(C_{e}H_{4}) = 6.14]$, leads to a calculated $_{m}K$ in agreement with that observed. Le Fèvre *et al.*¹⁸ have recorded the C(aliphatic)–O bond axes as $b_{\rm T}$ (C–O) = 0.89, $b_{\rm T}$ (C–O) = $b_{\rm V}$ (C–O) = 0.46. These are not applicable as such to diphenylene dioxide but must be corrected to allow for delocalizations of the oxygen lone-pair electrons into the aromatic rings. The overall molecular polarizability exaltation resulting from such interactions, $\sum \Delta b_i (= 2 \cdot 03)$, is derived from $\Delta_{\rm E} P = 0.95 \Delta R_{\rm D}$ where $\Delta R_{\rm D} = R_{\rm D}({\rm obs.}) - R_{\rm D}$ [calculated¹⁹ as $2R_{\rm D}$ $(C_{6}H_{4}) + 4R_{D}(C(aliphatic) - O)]$. We regard $\sum \Delta b/4$ as a polarizability exaltation increment directed along each C-O bond axis i.e. in the direction of maximum electromeric shift. The C(aliphatic)-O bond semi-axes are now corrected to give $b_{\rm L}(C_{\rm ar}-O) = 1.40, \ b_{\rm T}(C_{\rm ar}-O) = b_{\rm V}(C_{\rm ar}-O) = 0.46.$ Additivity of the $C_{\rm ar}-O$ link values with those of the C_6H_4 group leads to the calculated molecular polarizabilities $b_1 = 22 \cdot 23, \ b_2 = 23 \cdot 60, \ b_3 = 14 \cdot 12, \ \text{and thence to} \ \ \theta_1 = 10 \cdot 13 \times 10^{-35} \ \text{and to}$ $_{m}K(\text{calc.}) = 42 \cdot 6 \times 10^{-12}$, which is in good agreement with the measured value (in CCl_{4}).

Acknowledgment

The award of a Commonwealth Research Studentship to G.M.H. is gratefully acknowledged.

¹⁷ Smyth, C. P., and Di Carlo, E. N., J. Am. chem. Soc., 1962, 84, 1128.

¹⁸ Le Fèvre, R. J. W., Sundaram, A., and Pierens, R. K., *J. chem. Soc.*, 1963, 479.

¹⁹ Vogel, A. I., Cresswell, W. T., Jeffery, G. H., and Leicester, J., J. chem. Soc., 1952, 514.