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ABSTRACT 

Floral constituents of the Australian tar tree, Semecarpus australiensis, distributed in Melanesia and 
Northern Australia, were extracted with solvent, and analyzed by gas chromatography-mass 
spectrometry. The main constituents were 16- and 18-carbon fatty acids and their ethyl esters. 
Amongst the 67 identified compounds, zingerone was detected in minute quantity, providing the 
chemical basis for previous observations of fruit fly attraction to the flowers. The present study is 
the first to report the chemical profile of tar tree flowers.  

Keywords: fatty acids, floral volatiles, fruit fly, GC-MS, isoeugenol, native cashew, salicylates, 
Tephritidae. 

Introduction 

The flowers of many orchid species of the genus Bulbophyllum contain phenylpropanoids 
or phenylbutanoids that attract male Bactrocera and Zeugodacus fruit flies (Diptera, 
Tephritidae).[1] Their most common responses are to raspberry ketone and methyl 
eugenol, although many species do not respond to either of these compounds or respond 
only weakly.[2] More recent studies have found that some Bactrocera and Zeugodacus 
species respond to zingerone,[1a,1d,3] which occurs as a floral scent in Bu. patens and Bu. 
baileyi.[1a,1b,1d] In addition, isoeugenol and methyl isoeugenol have been found to attract 
some species that are non-responsive or weakly responsive to raspberry ketone and 
methyl eugenol.[3c,3d,4] Isoeugenol and methyl isoeugenol occur in the essential oils of 
various plant taxa, including different species of Citrus, Clusia, Pimenta, and Etlingera.[5] 

Reasons for the attraction of male fruit flies to phenylpropanoids and phenylbutanoids 
are incompletely understood,[6] and vary across compounds and fruit fly species. For 
example, males of some species of Bactrocera acquire methyl eugenol as a pheromone 
precursor[7] or as a metabolic enhancer to increase mating competitiveness. [8] In return, 
Bulbophyllum orchids benefit through pollination,[1a,1b,1f] hence the interaction between 
the orchids and fruit flies is mutually beneficial. 

In an evolutionarily unrelated interaction, the flowers of Passiflora maliformis release 
zingerone from their filaments and attract Bactrocera jarvisi.[9] Earlier records report that 
B. jarvisi is also attracted to flowers of the tar tree, also known as native cashew, 
Semecarpus australiensis, as well as to Bu. baileyi.[10] Zingerone in Bu. baileyi is respon-
sible for attraction of B. jarvisi.[10b] 

The tar tree grows naturally in rainforests, including the northeast part of Queensland 
and Northern Territory in Australia, and across a wide range in Melanesia including 
Torres Strait Islands, New Guinea, New Britain, and Aru Islands.[11] The tar tree produces 
cream-colored flowers in spring. Staminate (male) flowers, about 1.5 mm long, are 
sessile, while pistillate (female) flowers, about 4 mm long, are on pedicels. To date, 
the chemistry of tar tree flowers is unknown. The present study aims to (1) characterize 
the compounds in the tar tree flowers and (2) confirm the chemical basis of previous 
observations on the attraction of B. jarvisi males. The present study describes constitu-
ents in the solvent extracts of both staminate and pistillate tar tree flowers analyzed by 
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gas chromatography-mass spectrometry (GC-MS) and iden-
tifies the chemical basis for the attraction of fruit flies to 
these flowers. 

Results and discussion 

Extracts of tar tree flowers contained a diverse suite of 67 
compounds, including 11 aliphatic acids, 13 aliphatic esters, 
2 aliphatic alcohols, 2 monoterpenes, 4 aldehydes, 15 
aromatic compounds, and 20 hydrocarbons (Table 1). The 

proportions of the classes of the detected compounds in 
pistillate and staminate flowers are illustrated in Fig. 1. 
The aliphatic esters had the highest proportions in both 
sexes (51.9% in pistillate flowers and 35.2% in staminate 
flowers), followed by the aliphatic acids (21.8% in pistillate 
and 21.3% in staminate flowers). While many hydrocarbons 
were detected, their proportions were small (2.7% in pistil-
late flowers and 5.4% in staminate flowers). The proportions 
of aromatic compounds were 4.7 and 4.5% in pistillate 
flowers and staminate flowers, respectively. The remainder 
consisted of monoterpenes (2.6% in pistillate flowers and 

Table 1. Identified compounds in Smecarpus australiensis.           

No Identity MM RI RI (Ref) P, μg P, RSD  
(n = 10) 

S, μg S, RSD  
(n = 10)   

1 3-Methylbutanoic acid 102.13 831 834[ 12] 0.010 0.004 0.012 0.008 

2 1,2,4-Trimethylcyclohexane 126.24 874 881[ 13] 0.008 0.003 0.012 0.004 

3 1-Ethyl-4-methylcyclohexane 126.24 877 888[ 13] 0.004 0.002 0.009 0.002 

4 n-Nonane 128.26 900 900 0.018 0.08 0.023 0.006 

5 1-Ethyl-3-methylcyclohexane 126.24 912 931A[ 14] 0.007 0.002 0.009 0.003 

6 2-Heptenal 112.17 954 957[ 15] 0.153 0.074 0.059 0.021 

7 Benzaldehyde 106.12 960 958[ 16] 0.265 0.051 0.340 0.043 

8 β-Myrcene 136.23 991 993[ 17] 0.019 0.009 0.078 0.013 

9 1-Decene 140.27 990  0.020 0.010 0.043 0.017 

10 n-Decane 142.28 1000 1000 0.028 0.012 0.078 0.024 

11 D-Limonene 136.23 1025 1028[ 18] 2.230 0.950 9.187 2.399 

12 Benzyl alcohol 108.14 1028 1032[ 19] 0.119 0.021 0.123 0.005 

13 Benzeneacetaldehyde 120.15 1036 1042[ 20] 0.010 0.005 0.018 0.008 

14 3-Methylbenzaldehyde 120.15 1065 1086[ 21] 0.244 0.120 0.266 0.015 

15 n-Heptanoic acid 130.18 1071 1078[ 22] 0.036 0.013 1.801 2.064 

16 n-Nonanal 142.24 1104 1108[ 23] 0.302 0.086 0.319 0.058 

17 Phenylethyl alcohol 122.16 1114 1113[ 24] 0.171 0.050 0.185 0.038 

18 Benzyl nitrile 117.15 1134 1143[ 21] 0.009 0.004 0.010 0.006 

19 2-Ethylhexyl acetate 172.26 1146 1144[ 25] 0.018 0.024 0.008 0.004 

20 n-Octanoic acid 144.21 1173 1180[ 26] 0.187 0.060 0.243 0.048 

21 Diethyl succinate 174.19 1178 1176[ 27] 0.313 0.039 0.342 0.012 

22 Methyl salicylate 152.15 1191 1192[ 28] 1.233 0.466 1.078 0.255 

23 1-Dodecene 168.32 1193  0.105 0.015 0.146 0.035 

24 n-Dodecane 170.33 1200  0.008 0.002 0.018 0.003 

25 n-Decanal 156.27 1204 1208[ 29] 0.021 0.009 0.045 0.024 

26 Benzothiazole 135.19 1221 1228[ 30] 0.026 0.014 0.041 0.003 

27 n-Nonanoic acid 158.24 1264 1265[ 31] 0.036 0.014 0.057 0.014 

28 Ethyl salicylate 166.17 1268 1269[ 31] 0.664 0.171 0.7544 0.064 

29 n-Tridecane 184.36 1300  0.217 0.467 1.011 0.832 

30 4-Allyl-2-methoxyphenol (eugenol) 164.20 1356 1359[ 29] 0.025 0.018 0.018 0.005 

(Continued on next page) 
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Table 1. (Continued)          

No Identity MM RI RI (Ref) P, μg P, RSD  
(n = 10) 

S, μg S, RSD  
(n = 10)   

31 n-Decanoic acid 172.26 1363 1370[ 21] 0.476 0.119 0.561 0.115 

32 4-Hydroxy-3-methoxybenzaldehyde (vanillin) 152.15 1386  0.113 0.047 0.122 0.021 

33 1-Tetradecene 196.37 1393  0.174 0.051 0.328 0.109 

34 n-Tetradecane 198.38 1400  0.158 0.071 0.386 0.119 

35 2-Methoxy-4-propenylphenol (trans-isoeugenol) 164.20 1445 1451[ 32] 0.297 0.101 0.269 0.091 

36 Ethyl 4-ethoxybenzoate 194.23 1520 1522[ 33] 0.708 0.408 0.705 0.536 

37 5-MeC15 226.44 1553  0.077 0.045 0.108 0.019 

38 n-Dodecanoic acid (lauric acid) 200.32 1558 1558[ 34] 0.423 0.070 0.488 0.048 

39 3-MeC15 226.44 1573 1570[ 35] 0.475 0.061 0.590 0.021 

40 1-Hexadecene 224.43 1596  0.148 0.108 0.313 0.150 

41 n-Hexadecane 226.44 1600  0.147 0.112 0.438 0.226 

42 n-Tetradecanal 212.37 1611 1611[ 36] 0.025 0.015 0.039 0.023 

43 Benzophenone 182.22 1624 1628[ 33] 0.336 0.044 0.438 0.077 

44 4-(4-hydroxy-3-methoxyphenyl)-2-butanone 
(zingerone) 

194.23 1646 1640[ 37] 0.015 0.006 0.043 0.018 

45 Undecyl cyclopentane 224.42 1655 1656[ 35] 0.076 0.048 0.261 0.171 

46 2-MeC16 240.47 1665 1665[ 21] 0.052 0.031 0.153 0.078 

47 n-Heptadecane 240.47 1700  0.046 0.024 0.101 0.0254 

48 n-Tetradecanoic acid (myristic acid) 228.37 1759 1758[ 38] 0.198 0.164 0.401 0.261 

49 2-MeC17 254.49 1771 1771[ 35] 0.065 0.042 0.173 0.068 

50 Ethyl tetradecanoate (ethyl myristate) 256.42 1792 1795[ 39] 0.627 0.395 0.812 0.441 

51 n-Octadecane 254.49 1800  0.457 0.318 1.284 0.590 

52 1-Hexadecanol 242.44 1862 1883[ 21] 0.122 0.109 0.416 0.212 

53 Ethyl pentadecanoate 270.45 1893 1893[ 40] 0.196 0.103 0.247 0.121 

54 (Z)-9-hexadecenoic acid (palmitoleic acid) 254.41 1938 1941[ 21] 2.739 1.093 3.218 0.616 

55 n-Hexadecanoic acid (palmitic acid) 256.42 1969 1968[ 21] 7.187 1.492 9.936 4.796 

56 Ethyl (Z)-9-hexadecenoate (ethyl palmitoleate) 282.46 1979 1976[ 41] 0.534 0.505 0.301 0.073 

57 Ethyl (E)-9-hexadecenoate 282.46 1982 1978[ 42] 0.059 0.038 0.074 0.024 

58 Ethyl hexadecanoate (ethyl palmitate) 284.48 1992 1996[ 21] 21.143 10.501 17.333 7.867 

59 1-Octadecanol 270.49 2068 2063[ 43] 0.136 0.134 0.526 0.270 

60 Ethyl heptadecanoate 298.50 2093 2089[ 44] 0.264 0.213 0.179 0.106 

61 (Z,Z)-9,12-octadecadienoic acid (linoleic acid) 280.45 2134 2136[ 21] 0.848 0.319 0.421 0.107 

62 (Z)-9-octadecenoic acid (oleic acid) 282.46 2142 2146[ 21] 7.322 4.418 5.113 1.610 

63 Ethyl (Z,Z)-9,12-octadecadienoate (ethyl linoleate) 308.50 2161 2165[ 31] 8.868 5.331 5.900 2.209 

64 Ethyl (Z,Z,Z)-9,12,15-Octadecatrienoate 306.48 2165 2153[ 45] 5.178 1.501 4.881 1.910 

65 Ethyl (Z9)-octadecenoate (ethyl oleate) 310.51 2171 2172[ 41] 4.966 2.372 3.018 1.008 

66 Ethyl (E9)-octadecenoate 310.51 2181 2174[ 42] 0.730 0.330 0.501 0.12 

67 Ethyl octadecanoate 312.53 2192 2197[ 41] 1.863 1.152 1.341 0.502 

MM, molar mass; RI, Kovats retention index; RI (Ref), RI from the literature that used a column with 5% diphenyl/95% dimethyl polysiloxane as the stationary phase. 
AObtained from 100% dimethylpolysiloxane column; P, pistillate (female); S, staminate (male), RSD, relative standard deviation.  
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9.6% in staminate flowers), aliphatic aldehydes (0.6% in 
pistillate flowers and 0.4% in staminate flowers), and ali-
phatic alcohols (0.3% in pistillate flowers and 0.9% in 
staminate flowers). D-limonene is noticeably higher in stam-
inate flowers than in pistillate flowers (Table 1). Principal 
component analysis identified notable differences in the 
compositions of pistillate and staminate flowers (Fig. 2). 
Further detailed investigation will be required to identify 
the functional or physiological role of such compositional 
differences in these flowers. 

Flowers release a more diverse suite of volatiles at higher 
levels than other plant parts.[46] The floral volatiles are 
by-products of plant secondary metabolism, and some volatiles 
function to attract pollinators or as a defence against florivores 
and pathogens.[46] The fatty acids, 16- and 18-carbon species, 
i.e. C16:1 (palmitoleic acid), C16:0 (palmitic acid), C18:1 
(oleic acid) and C18:2 (linoleic), and their ethyl esters are 
the predominant constituents in the tar tree flower samples. 
The fatty acids are important compounds in plants. For exam-
ple, most cutin monomers are derived from the 16- and 
18-carbon fatty acids to form the macromolecules that are 

the framework of the plant cuticles. [47] The 18-carbon 
unsaturated fatty acids can be nitrated to act as signalling 
mediators in the plant-defence system in oxidative stress 
situations.[48] It is also known that linoleic acid serves as a 
hydroperoxyl intermediate for the biosynthesis of green leaf 
volatiles.[49] The other detected compounds are also commonly 
found in plants. For example, D-limonene inhibits spore germi-
nation of the rice blast fungus (Magnaporthe oryzae) and is 
expressed at higher levels in response to the up-regulation of a 
terpene synthase gene when rice plants have the fungal infec-
tion.[50] Methyl salicylate is widespread as a herbivore-induced 
volatile to communicate herbivore attacts in plants. For exam-
ple, barley exposed to deuterated methyl salicylate showed 
significant qualitative and quantitative changes in the chemical 
profile of the headspace.[51] Methyl salicylate is also known 
as a mobile signal to induce systemic acquired resistance 
against biotrophic pathogens in the tobacco plant.[52] 

Ethyl and methyl salicylates are the major aromatic con-
stituents in solvent extracts of the tar tree flowers, while 
phenylpropanoids and phenylbutanoids are present only in 
minute amounts. Although the amount of zingerone is min-
ute (Table 1), the presence of this compound explains the 
attraction of B. jarvisi.[3a,53] The attraction of B. jarvisi is 
specific to zingerone and has been confirmed by systematic 
modification of zingerone and testing the synthesized analogs 
in the field.[54] In the study, >99% of flies captured by traps 
containing zingerone and its analogs were B. jarvisi. Hence, it is 
likely that zingerone is responsible for the observed interaction 
between the plant and fruit fly species. There appears to be no 
record of other fruit fly species being attracted to tar tree 
flowers. Along the tar tree natural distribution range, it is likely 
that different local fruit fly species are attracted to one or more 
of the phenylpropanoids and phenylbutanoids. For example, 
tar tree flowers contain trans-isoeugenol which is attractive to 
males of a New Caledonian fruit fly, B. curvipennis.[3d] 

In summary, the present study addressed the chemical 
basis of the interaction between B. jarvisi and the native tar 
tree. Solvent extracts from tar tree flowers were dominated 
by unsaturated fatty acids and their ethyl esters. Amongst 
the 67 identified compounds, zingerone, a fruit fly attract-
ant, was detected in minute amounts, providing a likely 
explanation for reported attraction of B. jarvisi fruit flies. 
Co-evolutionary interactions between plants and their insect 
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pollinators mediated by plant secondary metabolites are 
known.[55] The commonly used fruit fly attractants are 
plant secondary metabolites or derivatives, which have 
been deployed for decades to monitor and control horticul-
tural pest fruit flies.[56] There are many unexplored plant 
species, but future investigations will greatly benefit from a 
targeted approach, for example, studies on species with 
previous observations and records will increase the chances 
of new attractant discovery and address the chemistry of a 
species of interest. 

Experimental 

Chemicals 

3-Methylbutanoic acid, n-nonane, 2-heptenal, benzaldehyde, 
β-myrcene, 1-decene, n-decane, D-limonene, benzyl alcohol, 
3-methylbenzaldehyde, n-heptanoic acid, n-nonanal, phe-
nethyl alcohol, n-octanoic acid, methyl 2-hydroxybenzoate, 
1-dodecene, n-dodecane, n-decanal, benzothiazole, n-nonanoic 
acid, ethyl 2-hydroxybenzoate, n-tridecane, 3-alyl-6-methoxy- 
phenol, n-decanoic acid, 4-hydroxy-3-methoxybenzaldehyde, 
1-tetradecene, n-tetradecane, 3-allyl-6-methoxyphenol, 1-tetra- 
decene, tetradecane, (E)-2-methoxy-4-(1-propenyl)phenol, 
n-dodecanoic acid, n-hexadecane, n-tetradecanal, benzo-
phenone, 4-(4-hydroxy-3-methoxyphenyl)-2-butanone, 
n-heptadecane, n-tetradecanoic acid, ethyl tetradecanoate, 
n-octadecane, 1-hexadecanol, ethyl pentadecanoate, (Z)-9-hexa- 
decenoic acid, n-hexadecanoic acid, ethyl (Z)-9-hexadecenoate, 
ethyl (E)-9-hexadecenoate, ethyl hexadecanoate, (Z,Z)-9,12- 
octadecadienoic acid, ethyl (Z,Z)-9,12-octadecadienoate, 
ethyl (Z,Z,Z)-9,12,15-octadecatrienoate, 1-octadecanol, 
(Z,Z)-9,12-octadecadienoic acid, (Z)-9-octadecenloic acid, 
ethyl (Z)-9-octadecenoate, and ethyl octadecanoate were pur-
chased from Sigma-Aldrich. 3-Ethylhexyl acetate was pur-
chased from Tokyo Chemical Industry. All compounds were 
analytical grade with 98% purity or higher. 

Collection of flowers 

The flowers (Queensland Herbarium voucher number: 
AQ952605) were collected from male and female tar trees 
located in Silver Crescent Park, Palm Cove, Queensland, 
Australia (−16.758420, 154.669235) in October 2018. 
Branches with staminte or pistillate flowers were cut from 
the trees. Ten flowers of each sex were separately cut into 
fine pieces in a ceramic bowl using microscissors. The fine 
flower pieces were transferred to a 2.0 mL clear vial con-
taining 1.0 mL of absolute ethanol (six replicates for each 
sex). The samples were transported to Macquarie University, 
Australia, and stored at 4°C for 2–3 weeks until extracted. 

Extraction of flowers 

Milli-Q water (1.0 mL) (Millipore) was added to each sample 
vial, vortexed for 30 s, and then ultrasonicated for 30 min. 

The aqueous extract was transferred to a 10 mL separating 
funnel. The aqueous phase was extracted with the organic 
solvents (3 × 2.0 mL, 10% ethyl acetate in hexane). The 
organic layers were combined, washed with Milli-Q water 
(6.0 mL), and dried over Na2SO4. The solvents were evapo-
rated using a Rotary evaporator (Buchi), and the residue was 
re-dissolved in 200 µL of 10% ethyl acetate (v/v) in hexane. 
The extracted samples were stored at −30°C until analyzed. 
An aliquot (5 μL) of the three internal standards, 1-octanol, 
methyl n-dodecanoate, and methyl n-hexadecanoate, were 
incorporated to give 2.6, 2.5, and 2.6 µg/mL, respectively. 

Gas chromatography-mass spectrometry 
(GC-MS) analysis 

GC-MS analysis was performed on a Shimadzu GCMS 
TQ8040 spectrometer equipped with a split/splitless injector, 
fused silica capillary column (SH-Rtx-5MS, 30 m × 0.25 mm  
I.D. × 0.25 μm film thickness) with cross-bond 5% diphenyl/ 
95% dimethyl polysiloxane as the stationary phase and inte-
grated mass spectrometry (MS). Helium gas (BOC, North 
Ryde, NSW, Australia) (99.999%) was used as a carrier gas 
with a constant flow of 1.5 mL/min. An aliquot of 1 μL of a 
sample was injected in splitless mode, and the injection port 
temperature was 270°C. The initial column temperature was 
set at 60°C and held for 4 min, increased to 220°C at a rate of 
2°C/min, then increased to 320°C at a rate of 30°C/min and 
held for 3 min. The interface and ion source box temperatures 
were set at 250 and 200°C, respectively. The ionization 
method was electron impact at a voltage of 70 eV. The spectra 
were obtained over a mass range of m/z 41–600. The data 
were processed by Shimadzu GCMS Post-run software. The 
retention indices were obtained by analyzing a run of a 
standard mixture of C8 to C40 alkane with a sample. For 
identifications, mass spectra were compared with the NIST 
library (NIST17-1, NIST17-2, NIST17s) to identify related 
molecules. Fragmentation patterns and retention indices 
published in the literature were used to determine candidate 
molecules. The identity of a candidate molecule was con-
firmed by comparing retention time and fragmentations of 
the authentic molecule. The solvents used, including absolute 
ethanol, hexane, and ethyl acetate, were routinely analyzed 
by GC-MS to identify any impurities. The percentage of 
each compound was calculated from the quantification or 
semi-quantification of the constituents. 

Standard solutions of five known concentrations of the 
individual compounds were prepared to quantify individual 
compounds. These contained three internal standards with 
the same concentration used in the extracted samples, in 
5 mL volumetric flasks. The standard solutions were analyzed 
by GC-MS along with the flower samples. The standard curves 
of the authentic samples were generated by linear regression 
of peak area ratios of a compound to the internal standard 
against concentration ratios of a compound to that of the 
internal standard. Equations obtained by linear regression 
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were used to calculate the concentrations of the compounds 
in a sample, and the amount of a compound per flower was 
subsequently estimated by taking account of the final sample 
volume of a sample prepared from ten flowers. 

Several compounds that are not commercially available 
were estimated by the use of a surrogate.[57] The response 
factor of 1,2,4-trimethyl cyclohexane was used to estimate 
the quantities of 1-ethyl-4-methylcyclohexane and 1-ethyl- 
3-methylcyclohexane. The response factor of benzaldehyde 
was used to estimate the quantity of benzeneacetaldehyde. 
The response factor of methyl hexadecanoate was used to 
estimate the quantities of 3-methyl pentadecane, undecyl 
cyclopentane, 2-methyl hexadecane, 2-methyl heptadecane. 
The response factor of ethyl (Z)-9-hexadecenoate was used 
to estimate the quantity of ethyl (E)-9-hexadecenoate. The 
response factor of ethyl (Z)-9-octadecenoate was used to 
estimate the quantity of ethyl (E)-9-octadecenoate. 

Data analysis 

Principal component analysis was carried out to compare 
the compositions of pistillate and staminate flowers. 

Supplementary material 

Supplementary material is available online. 
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