Rates of Water Exchange in 2,2′-Bipyridine and 1,10-Phenanthroline Complexes of CoII and MnII*
Shravan S. Acharya A , Bjorn Winther-Jensen B , Leone Spiccia A and C. André Ohlin C DA School of Chemistry, Monash University, Clayton, Vic. 3168, Australia.
B Department of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
C Department of Chemistry, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden.
D Corresponding author. Email: andre.ohlin@umu.se
Australian Journal of Chemistry 70(6) 751-754 https://doi.org/10.1071/CH16667
Submitted: 28 November 2016 Accepted: 16 February 2017 Published: 10 March 2017
Abstract
The rates and activation parameters of water exchange at pH 3.0 have been determined using variable temperature 17O NMR spectroscopy for four CoII complexes and one MnII complex: [Co(bpy)(H2O)4]2+, [Co(bpy)2 (H2O)2]2+, [Co(phen)-(H2O)4]2+, [Co(phen)2 (H2O)2]2+, and [Mn(bpy)(H2O)4]2+ (bpy = 2,2′-bipyridyl and phen = 1,10-phenanthroline). Substitution of aquo ligands with 1,10-phenanthroline or 2,2′-bipyridyl leads to an increase in the rate of exchange in the manganese complexes, from k298 (1.8 ± 0.1) × 107 s−1 for [Mn(H2O)6]2+ to (7.2 ± 0.3) × 107 s−1 for [Mn(phen)2 (H2O)2]2+, whereas the trends are more complex for the cobalt complexes. We have used the new data in conjunction with literature data for similar complexes to analyse the effect of M–OH2 distance and degree of substitution.
References
[1] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7nI&md5=df16fe5e6ab5d0b98fdebc20483e71fbCAS |
[2] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChs77M&md5=215c673e86c5c205d45d57e5e72b8bdcCAS |
[3] B. Biswas, A. Al-Hunaiti, M. T. Räisänen, S. Ansalone, M. Leskelä, T. Repo, Y.-T. Chen, H.-L. Tsai, A. D. Naik, A. P. Raillet, Y. Garcia, R. Ghosh, N. Kole, Eur. J. Inorg. Chem. 2012, 4479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oktb3K&md5=9146fb7677255000f59070a8ff0f7157CAS |
[4] S. Jagadeesan, V. Balasubramanian, P. Baumann, M. Neuburger, D. Häussinger, C. G. Palivan, Inorg. Chem. 2013, 52, 12535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WltLvI&md5=50dc1f280cf494b15aeab02b7ba97cddCAS |
[5] Y. Sasaki, H. Kato, A. Kudo, J. Am. Chem. Soc. 2013, 135, 5441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFaqsLw%3D&md5=492c6f69afab02e279bcf794c28422daCAS |
[6] W. Xiang, F. Huang, Y.-B. Cheng, U. Bach, L. Spiccia, Energy Environ. Sci. 2013, 6, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKqtLbK&md5=e426e407d8ab3f8ec57000e865fcf0b4CAS |
[7] A. F. Panasci, J. G. McAlpin, C. A. Ohlin, S. Christensen, J. C. Fettinger, R. D. Britt, J. R. Rustad, W. H. Casey, Geochim. Cosmochim. Acta 2012, 78, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFOrsg%3D%3D&md5=cf03c4c4b16988c80599027192f95b29CAS |
[8] K. Kandel, S. M. Althaus, C. Peeraphatdit, T. Kobayashi, B. G. Trewyn, M. Pruski, I. I. Slowing, ACS Catal. 2013, 3, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVSqtw%3D%3D&md5=7dd59ebab153eb869b64eb24d40d42beCAS |
[9] T. J. Swift, R. E. Connick, J. Chem. Phys. 1962, 37, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xksl2qs78%3D&md5=975aab0a0dd80fdc51b529b406b30c74CAS |
[10] S. J. Harley, C. A. Ohlin, W. H. Casey, Geochim. Cosmochim. Acta 2011, 75, 3711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFyru7Y%3D&md5=c883d1caa3b00b919528da51ec83b759CAS |
[11] R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers, L. Spiccia, J. Am. Chem. Soc. 2010, 132, 2892.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFOrsbk%3D&md5=f520a21f27a215287a78e7be51a3707aCAS |
[12] M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbP&md5=5bb5f8de4b9e047f118b0b38c6654341CAS |
[13] M. Grant, H. W. Dodgen, J. P. Hunt, J. Am. Chem. Soc. 1970, 92, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXht1Gnurc%3D&md5=b33b79977801b7aa7b013f4483cf3afaCAS |
[14] J. P. Hunt, M. Grant, H. W. Dodgen, Inorg. Chem. 1971, 10, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXks1Sgtg%3D%3D&md5=4110d9d7c826bc98b6ccbbe6e1f51c50CAS |
[15] L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, Coord. Chem. Rev. 1999, 184, 311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Kitr8%3D&md5=ffadb57d03df05332feb3b6d5476c404CAS |
[16] G. von Anderegg, Helv. Chim. Acta 1963, 46, 2813.
| Crossref | GoogleScholarGoogle Scholar |
[17] R. L. Davies, K. W. Dunning, J. Chem. Soc. 1965, 4168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkt1yit78%3D&md5=58b2bcfd1ef8d24f1342b370e619100dCAS |
[18] T. W. Swaddle, Coord. Chem. Rev. 1974, 14, 217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXptVCgtw%3D%3D&md5=017915b1adf0c315db22c8e458ce471eCAS |
[19] S. F. Lincoln, M. A. Hounslow, D. L. Pisaniello, B. G. Doddridge, A. E. Coates, J. H. Merbach, D. Zbinden, Inorg. Chem. 1984, 23, 1090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFygtb8%3D&md5=b200b197060060782a695b3433a75207CAS |
[20] L. Helm, A. E. Merbach, Chem. Rev. 2005, 105, 1923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivV2msrg%3D&md5=cb3972b4c77409378e720ff577039685CAS |
[21] H. Irving, D. H. Mellor, J. Chem. Soc. 1962, 5222.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXls1Grsg%3D%3D&md5=6af4c7dc71613fa9251ca9f1bc8f2e30CAS |