Open-Chain Crown-Ether-Derived Two-Photon Fluorescence Probe for Real-Time Dynamic Biopsy of Mercury Ions
Chibao Huang A E , Daohai Zhang B , Junle Qu C , Xiaonan Liu D E , Guanglian Zhao A , Tingxiang Yuan A and Yang Liu AA Chemistry and Chemical Engineering College, Zunyi Normal University, Zunyi 563002, China.
B Research and Development Department (R & D), National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 55004, China.
C Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
D The Hospital Infection Management Section, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550014, China.
E Corresponding authors. Email: huangchibao@163.com; liuxiaonan309@163.com
Australian Journal of Chemistry 70(6) 705-711 https://doi.org/10.1071/CH16224
Submitted: 23 August 2016 Accepted: 17 October 2016 Published: 14 November 2016
Abstract
A novel two-photon fluorescence probe for Hg2+ derived from bis(styryl)terephthalonitrile, as a two-photon fluorophore, and bis[2-(2-hydroxyethyl sulfanyl) ethyl]amino group (ionophore), as a novel Hg2+ ligand, was developed. The probe possesses small molecule size, large two-photon absorption cross-section (1067 GM) in H2O, non-cytotoxic effect, long wavelength emission at 588 nm, large Stokes shift (121 nm), excellent photostability, high water solubility, good cell permeability, and pH insensitivity in the biologically relevant range. The probe can selectively detect Hg2+ ions in live cells and living tissues without interference from other metal ions and the membrane-bound probes, and its quenching constant is 8.73 × 105 M–1.
References
[1] H. M. Kim, C. Jung, B. R. Kim, S.-Y. Jung, J. H. Hong, Y.-G. Ko, K. J. Lee, B. R. Cho, Angew. Chem., Int. Ed. 2007, 46, 3460.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtV2jtr8%3D&md5=4e4923b8bb4d3200da8f9fed85a5e7d1CAS |
[2] H. M. Kim, B. R. Kim, J. H. Hong, J.-S. Park, K. J. Lee, B. R. Cho, Angew. Chem., Int. Ed. 2007, 46, 7445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2gurvJ&md5=69f3f4dbfe8c97572b6aaf2a9bd34eb7CAS |
[3] M. K. Kim, C. S. Lim, J. T. Hong, J. H. Han, H.-Y. Jang, H. M. Kim, B. R. Cho, Angew. Chem., Int. Ed. 2010, 49, 364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsV2l&md5=0d76d244e12568a7ff4b8048544c6e4dCAS |
[4] B. R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging 2006 (SPIE: Bellingham, WA).
[5] P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland, Annu. Rev. Biomed. Eng. 2000, 2, 399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVaktbg%3D&md5=cdaf81c8663dc449c3d956eb0dc4c23aCAS |
[6] L. Guo, M. S. Wong, Adv. Mater. 2014, 26, 5400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOis7fE&md5=09fa8d6a92271491ae1cf7c996048e7cCAS |
[7] C. Huang, C. Ding, Anal. Chim. Acta 2011, 699, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVChsL0%3D&md5=5ff3e1c7e0b23889b47f791e59c6e910CAS |
[8] C. Huang, J. Qu, J. Qi, M. Yan, G. Xu, Org. Lett. 2011, 13, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFWruro%3D&md5=2c14e6daf44bceb0d1f8efbeaf14537eCAS |
[9] S. Sumalekshmy, M. M. Henary, N. Siegel, P. V. Lawson, Y. Wu, K. Schmidt, J.-L. Brédas, J. W. Perry, C. J. Fahrni, J. Am. Chem. Soc. 2007, 129, 11888.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWis7jL&md5=e96401b69026292f113d0c4a9bc72b99CAS |
[10] H. M. Kim, M. S. Seo, M. J. An, J. H. Hong, Y. S. Tian, J. H. Choi, O. Kwon, K. J. Lee, B. R. Cho, Angew. Chem., Int. Ed. 2008, 47, 5167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos1Gku78%3D&md5=d977ee04f17b25f79ed398a0ecc1e971CAS |
[11] C. Huang, A. Ren, C. Feng, N. Yang, Sens. Actuators, B 2010, 151, 236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGntbjP&md5=2a7c45d0fd8b5eca5cc18be103ecefa4CAS |
[12] C. Huang, X. Peng, Z. Lin, J. Fan, A. Ren, D. Sun, Sens. Actuators, B 2008, 133, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOrt7k%3D&md5=8388f7fdaad90046f4e7618d0e06e19fCAS |
[13] Y. S. Tian, H. Y. Lee, C. S. Lim, J. Park, H. M. Kim, Y. N. Shin, E. S. Kim, H. J. Jeon, S. B. Park, B. R. Cho, Angew. Chem., Int. Ed. 2009, 48, 8027.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kju7rN&md5=e49df335ba92b97ec3a606bf09150440CAS |
[14] M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang, D. Zhang, T. Yi, C. Huang, J. Am. Chem. Soc. 2007, 129, 10322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVWitbY%3D&md5=96370069c9e0966597b45950fa8b36c7CAS |
[15] J. H. Lee, C. S. Lim, Y. S. Tian, J. H. Han, B. R. Cho, J. Am. Chem. Soc. 2010, 132, 1216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs12ltw%3D%3D&md5=fe6f1462e45d29c3f259581d8e94356cCAS |
[16] C. H. Heo, A. R. Sarkar, S. H. Baik, T. S. Jung, J. J. Kim, H. Kang, I. Mook-Jung, H. M. Kim, Chem. Sci. 2016, 7, 4600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xms1Kku7Y%3D&md5=4d66eeb11eec358ee6f793dcbe00aca0CAS |
[17] H. M. Kim, B. R. Cho, Chem. Rev. 2015, 115, 5014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvV2kt74%3D&md5=d845a4346f8d2742916c392eda98ba0bCAS |
[18] H. H. Harris, I. J. Pickering, G. N. George, Science 2003, 301, 1203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFejurs%3D&md5=fc5d9e99d474f28addb95d110cd9797eCAS |
[19] M. Harada, Crit. Rev. Toxicol. 1995, 25, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3ltFOktA%3D%3D&md5=ae18e313432596cdddbdabbeb82765ceCAS |
[20] C. M. Palmeira, A. J. Moreno, V. M. Madeira, Toxicol. Appl. Pharmacol. 1994, 127, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVWmtLo%3D&md5=0eb97497fedf2ce25c2d0ba2e5abdab0CAS |
[21] T. Endo, M. Sakata, Z. A. Shaikh, Toxicol. Appl. Pharmacol. 1995, 132, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsF2it7o%3D&md5=cfc59a304a20dfef52c0dc0a1c785204CAS |
[22] C. C. Bridges, R. K. Zalups, Am. J. Pathol. 2004, 165, 1385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFSmu7g%3D&md5=0e6cbc0a0a80b8a05528d29c3dc6f2ddCAS |
[23] Z. Zhang, D. Wu, X. Guo, X. Qian, Z. Lu, Q. Xu, Y. Yang, L. Duan, Y. He, Z. Feng, Chem. Res. Toxicol. 2005, 18, 1814.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1eitrnI&md5=c5ec2735c370bbbbcae49f35d39cbe9bCAS |
[24] Z. Xu, X. Qian, J. Cui, Org. Lett. 2005, 7, 3029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVeis70%3D&md5=eccf3326ef83b863fc7d7454a1d5b8bcCAS |
[25] R. Martınez, A. Espinosa, A. T’arraga, P. Molina, Org. Lett. 2005, 7, 5869.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. Prodi, C. Bargossi, M. Montalti, N. Zaccheroni, N. Su, J. S. Bradshaw, R. M. Izatt, P. B. Savage, J. Am. Chem. Soc. 2000, 122, 6769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVaqtL0%3D&md5=8255540cb102bdbde250872331bac025CAS |
[27] K. Rurack, M. Kollmannsberger, U. Resch-Genger, J. Daub, J. Am. Chem. Soc. 2000, 122, 968.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2luw%3D%3D&md5=182bd7b4b9b90f1ff813c1a5f3634cd1CAS |
[28] J. Greeley, W. P. Krekelberg, M. Mavrikakis, Angew. Chem. 2004, 116, 4396.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Zheng, Z.-H. Qian, L. Xu, F.-F. Yuan, L.-D. Lan, J.-G. Xu, Org. Lett. 2006, 8, 859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqsLk%3D&md5=58a48a864737235f51ea028086ecbc87CAS |
[30] E. M. Nolan, S. J. Lippard, J. Am. Chem. Soc. 2003, 125, 14270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVOguro%3D&md5=a1d370f127168d18a91b3b5842250ac7CAS |
[31] H. Dai, F. Liu, Q. Gao, T. Fu, X. Kou, Luminescence 2011, 26, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rtrvP&md5=0ec8289e313869e5145ab3457a5df2a1CAS |
[32] Y. Wu, Y. Dong, J. Li, X. Huang, Y. Cheng, C. Zhu, Chem. – Asian J. 2011, 6, 2725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVentbvM&md5=d9c68f7e394a921b4cb6f1d8970ca424CAS |
[33] C. S. Lim, D. W. Kang, Y. S. Tian, J. H. Han, H. L. Hwang, B. R. Cho, Chem. Commun. 2010, 46, 2388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1GmsrY%3D&md5=c760e38ba9a88f5952ef7a30fc33abb4CAS |
[34] J. Bell, I. Samb, P. Y. Toullec, O. Mongin, M. Blanchard-Desce, V. Michelet, I. Leray, New J. Chem. 2014, 38, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisF2qsL0%3D&md5=2ad9a2f1ebe6e7882f086ac7959a0c1aCAS |
[35] D. F. Eaton, J. Photochem. Photobiol., B. 1988, 2, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVeqt74%3D&md5=3b145c62faba8dd2a86585131508b8eaCAS |
[36] C. Xu, W. W. Webb, J. Opt. Soc. Am. B 1996, 13, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVCmtbY%3D&md5=6b06d81e9cd2f4281b3c7cde4b8ddc03CAS |
[37] S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard, J. Am. Chem. Soc. 2001, 123, 7831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlSntrw%3D&md5=1f09364d183d31c4e86f1c38409b16daCAS |
[38] H. Huang, Q. He, H. Lin, F. Bai, Z. Sun, Q. Li, Polym. Adv. Technol. 2004, 15, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVWgtro%3D&md5=81955f78e19b57128860783060f9f054CAS |
[39] W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, J. W. Perry, J. Phys. Chem. B 2002, 106, 6853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1CltLo%3D&md5=f5d50cbe7191e557925c48d16d042143CAS |
[40] R. H. Wiley, G. Irick, J. Org. Chem. 1961, 26, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXoslaktA%3D%3D&md5=75476c13186c2bfc677b256cf90be468CAS |