Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Kinetics and Mechanism of Oxidation of d-Penicillamine in Acidified Bromate and Aqueous Bromine

Kudzanai Chipiso A and Reuben H. Simoyi A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Portland State University, Portland, OR 97207-0751, USA.

B School of Chemistry and Physics, University of KwaZulu–Natal, Westville Campus, Durban 4014, South Africa.

C Corresponding author. Email: rsimoyi@pdx.edu

Australian Journal of Chemistry 69(11) 1305-1313 https://doi.org/10.1071/CH16050
Submitted: 28 January 2016  Accepted: 12 May 2016   Published: 4 July 2016

Abstract

The oxidation of the biologically active compound d-penicillamine (Depen) by acidic bromate has been studied. The stoichiometry of the reaction is strictly 1 : 1, in which Depen is oxidized only as far as the sulfonic acid with no cleavage of the C–S bond to yield sulfate. Electrospray ionization spectroscopy shows that Depen is oxidized through addition of oxygen atoms on the sulfur centre to successively yield sulfenic and sulfinic acids before the product sulfonic acid. In conditions of excess Depen over the oxidant, sulfenic acid was not observed. Instead, nearly quantitative formation of the dimer was obtained. The dimer, which is the d-penicillamine disulfide species, was formed from a reaction of the putative highly electrophilic sulfenic acid with unreacted Depen in a condensation-type reaction and not through a radical-mediated pathway. Further oxidation of the dimer is slow because it is the most stable intermediate in the oxidation of Depen. In excess oxidant conditions, negligible dimer formation is observed. The reaction of bromine with Depen gives a stoichiometry of 3 : 1 with the same sulfonic acid product. This reaction is so fast that it is essentially diffusion controlled. Our stopped-flow instrument could not capture the oxidation by the first 2 moles of bromine, only the section of the reaction in which the sulfinic acid is oxidized to sulfonic acid.


References

[1]  Y. H. Wang, Q. Han, Q. Zhang, Y. H. Huang, L. J. Guo, Y. Z. Fu, Anal. Methods 2013, 5, 5579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGku7zI&md5=f011864c77a5536a17f5c5029c8e6fe1CAS |

[2]  S. W. Smith, Toxicol. Sci. 2009, 110, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFKktbg%3D&md5=1478b10aea6779df5fd5ba60144c7fdbCAS | 19414517PubMed |

[3]  H. Chang, A. J. Xu, Z. H. Chen, Y. Zhang, F. Tian, T. Li, Exp. Ther. Med. 2013, 5, 1129.
         | 1:CAS:528:DC%2BC3sXmsFenu7s%3D&md5=0e222da4329452d88d206c1fdcd28d4fCAS | 23599735PubMed |

[4]  M. Friedman, Proc. R. Soc. Med. 1977, 70, 50.
         | 1:CAS:528:DyaE1cXksFSguw%3D%3D&md5=401fbb736d3952e1fb3bcb5a731f9adbCAS | 122675PubMed |

[5]  S. Wadhwa, R. J. Mumper, Cancer Lett. 2013, 337, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFShuro%3D&md5=355ebf06f7f47f1f8c57acff08eb4428CAS | 23727371PubMed |

[6]  O. Meyer, Rev. Rhum. 1986, 53, 15.
         | 1:CAS:528:DyaL28Xhs1Wgtbc%3D&md5=56a16471bd5be633314239cec85b3a9dCAS | 2939541PubMed |

[7]  R. Ishak, O. Abbas, Am. J. Clin. Dermatol. 2013, 14, 223.
         | Crossref | GoogleScholarGoogle Scholar | 23605177PubMed |

[8]  B. K. H. Lewis, P. L. Chern, M. S. Stone, J. Am. Acad. Dermatol. 2009, 60, 700.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  F. I. Zuniga, D. Loi, K. H. J. Ling, D. D. S. Tang-Liu, Expert Opin. Drug Metab. Toxicol. 2012, 8, 467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOrsLs%3D&md5=a5a113cceb9462569731763c5e260326CAS | 22394356PubMed |

[10]  A. S. McCall, C. F. Cummings, G. Bhave, R. Vanacore, A. Page-McCaw, B. G. Hudson, Cell 2014, 157, 1380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslagtrc%3D&md5=294110561fc0eea28bf91cd525e6f79eCAS | 24906154PubMed |

[11]  E. L. Thomas, P. M. Bozeman, M. M. Jefferson, C. C. King, J. Biol. Chem. 1995, 270, 2906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjslahtrg%3D&md5=16f36f97b17b24580ffc99b879ebe856CAS | 7852368PubMed |

[12]  A. B. DeAngelo, M. H. George, S. R. Kilburn, T. M. Moore, D. C. Wolf, Toxicol. Pathol. 1998, 26, 587.
         | 1:CAS:528:DyaK1cXmvVSls78%3D&md5=bc950d7f4572bb8fd027225729119e6bCAS | 9789944PubMed |

[13]  Y. Yamada, K. R. Preston, Cereal Chem. 1994, 71, 297.
         | 1:CAS:528:DyaK2cXmt12gtbs%3D&md5=0ce244ce3b79fc3f9584c3f9257f8774CAS |

[14]  F. F. Kaya, M. Topaktas, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 626, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaqs77N&md5=0fe3181cdb0a83227c8abe8eec9eaa34CAS |

[15]  J. P. Gaut, G. C. Yeh, J. Byun, H. Tran, A. Belaaouaj, J. W. Heinecke, Free Radic. Biol. Med. 2001, 31, S23.

[16]  H. L. Nurcombe, R. C. Bucknall, S. W. Edwards, Ann. Rheum. Dis. 1991, 50, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVGnsbc%3D&md5=3534f63b9ae9e62410203ffbf1e95451CAS | 1849716PubMed |

[17]  H. L. Nurcombe, R. C. Bucknall, S. W. Edwards, Ann. Rheum. Dis. 1991, 50, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3ivFCitA%3D%3D&md5=bf310ebcefbc8cfdb5509eb73e37490bCAS | 1851410PubMed |

[18]  A. L. P. Chapman, O. Skaff, R. Senthilmohan, A. J. Kettle, M. J. Davies, Biochem. J. 2009, 417, 773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFOgtA%3D%3D&md5=7c8b12939f5e8b940a28493533d6510bCAS |

[19]  A. V. Peskin, C. C. Winterbourn, Free Radic. Biol. Med. 2001, 30, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1yjsr0%3D&md5=d6dd6ad201ae096f4befe14e69a89d68CAS | 11182528PubMed |

[20]  J. G. Bender, D. E. Vanepps, R. Searles, R. C. Williams, Inflammation 1986, 10, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs1GmtA%3D%3D&md5=699566c8ff22819cd2680b6d43f2a231CAS | 3025094PubMed |

[21]  R. A. Cuperus, A. O. Muijsers, R. Wever, Arthritis Rheum. 1985, 28, 1228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XivVGksQ%3D%3D&md5=f8a3513bbb5a3e8808223f31cd4a2d73CAS | 2998407PubMed |

[22]  J. Gutierrez-Correa, R. L. Krauth-Siegel, A. O. Stoppani, Rev. Argent. Microbiol. 2000, 32, 136.
         | 1:CAS:528:DC%2BD3cXntFamt74%3D&md5=7ef994c10a88982f093952ae467d7c6dCAS | 11008705PubMed |

[23]  M. J. Ledson, R. C. Bucknall, S. W. Edwards, Ann. Rheum. Dis. 1992, 51, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVyjtLY%3D&md5=f14cceb997979e73177b234d12364348CAS | 1315509PubMed |

[24]  C. S. Lee, Y. Y. Jang, J. S. Song, J. H. Song, E. S. Han, Pharmacol. Toxicol. 2002, 91, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFClsbo%3D&md5=5688f4923fb7ea03d8abc56cbdf0221bCAS | 12427115PubMed |

[25]  O. N. Medina-Campos, D. Barrera, S. Segoviano-Murillo, D. Rocha, P. D. Maldonado, N. Mendoza-Patino, J. Pedraza-Chaverri, Food Chem. Toxicol. 2007, 45, 2030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFyht7Y%3D&md5=071b67461e6a9a9b9389d73f7c7e60a9CAS | 17576034PubMed |

[26]  B. I. Coble, C. Dahlgren, J. Hed, O. Stendahl, Biochim. Biophys. Acta 1984, 802, 501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXns12rsA%3D%3D&md5=11d5227fa53b68d348d70077094febd2CAS | 6095920PubMed |

[27]  I. R. Epstein, K. Kustin, R. H. Simoyi, J. Phys. Chem. 1992, 96, 6326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFKrsLY%3D&md5=3fad6f7d830438adcdce394d5c16e791CAS |

[28]  R. H. Simoyi, I. R. Epstein, I. Kustin, J. Phys. Chem. 1994, 98, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlCgsw%3D%3D&md5=eaac2a44bd05b8c36164c7fede48301cCAS |

[29]  R. H. Simoyi, I. R. Epstein, J. Phys. Chem. 1987, 91, 5124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltleksbo%3D&md5=7043af6b89dce9fb82668c1a48b9ece5CAS |

[30]  R. M. Noyes, R. J. Field, R. C. Thompson, J. Am. Chem. Soc. 1971, 93, 7315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVGlsQ%3D%3D&md5=9f9d39676c5727a56842cf9fa5c22033CAS |

[31]  R. M. Noyes, J. Am. Chem. Soc. 1980, 102, 4644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCkuro%3D&md5=c064d4284eddf1605226b1d2e6feac1cCAS |

[32]  G. P. Kapungu, G. Rukweza, T. Tran, W. Mbiya, R. Adigun, P. Ndungu, B. Martincigh, R. H. Simoyi, J. Phys. Chem. A 2013, 117, 2704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisV2is74%3D&md5=9dd0f0e469fe6e34c661d8a15475caa2CAS | 23410042PubMed |

[33]  U. Burner, W. Jantschko, C. Obinger, FEBS Lett. 1999, 443, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1SgtLg%3D&md5=579949ef4ebfa8f8a79c456905c24b49CAS | 10025950PubMed |

[34]  A. Chanakira, E. Chikwana, D. Peyton, R. Simoyi, Can. J. Chem. 2006, 84, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlGgsrk%3D&md5=c9fd33d9ab494a80586e530712af7ecfCAS |

[35]  M. K. Morakinyo, E. Chikwana, R. H. Simoyi, Can. J. Chem. 2008, 86, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFejtLc%3D&md5=50bdeb8086dab6a767195afd238dd92aCAS |

[36]  G. Lopez-Cueto, M. Ostra, C. Ubide, Anal. Chim. Acta 2001, 445, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVKlur8%3D&md5=e55d3e629ba4beb58f13319f8c7444daCAS |

[37]  M. K. Morakinyo, E. Chikwana, R. H. Simoyi, Can. J. Chem. 2008, 86, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFejtLc%3D&md5=50bdeb8086dab6a767195afd238dd92aCAS |

[38]  M. Orban, I. R. Epstein, J. Am. Chem. Soc. 1992, 114, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlCnsLY%3D&md5=91712e4d304e73ecc4c64d3244c6c350CAS |

[39]  C. E. S. Cortes, R. B. Faria, J. Braz. Chem. Soc. 2001, 12, 775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1ans7c%3D&md5=17848b5eb86302f88399b6e570fb087cCAS |