Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Cooperative Effect in Dendronized Chitosan Microbeads

Ana Agustina Aldana A , Miriam C. Strumia A and Marisa Martinelli A B
+ Author Affiliations
- Author Affiliations

A Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina.

B Corresponding author. Email: mmartinelli@fcq.unc.edu.ar

Australian Journal of Chemistry 68(12) 1918-1925 https://doi.org/10.1071/CH15102
Submitted: 4 March 2015  Accepted: 14 May 2015   Published: 16 June 2015

Abstract

The present study evaluates the cooperative effects of dendronized chitosan microbeads with tris- and hexa-functionalized dendrons for capturing copper and for further use as catalysts. The dendronized microbeads were characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetry, swelling capacity analysis, and atomic absorption spectroscopy. A correlation between the number and type of functional groups at the dendritic surface of the dendronized microbeads and the retention of copper highlights structural features of the cooperative effect. It is demonstrated that covalently bound dendrons can modulate the properties of chitosan, which has shown potential as a catalyst for the development of a novel materials.


References

[1]  O. G. da Silva, M. G. da Fonseca, L. N. H. Arakaki, Colloids Surf., A 2007, 301, 376.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. I. Paez, M. Martinelli, V. Brunetti, M. C. Strumia, Polymers (Basel, Switz.) 2012, 4, 355.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  R. S. Bagul, N. Jayaraman, J. Organomet. Chem. 2012, 701, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKktLc%3D&md5=32a5e37c14aa9f806e95f2a6557bce6eCAS |

[4]  R. T. Lee, H.-J. Gabius, Y. C. Lee, Carbohydr. Res. 1994, 254, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFWlsLc%3D&md5=ce6958fc2bb412453ea4053e30f90594CAS | 8180989PubMed |

[5]  M. Kröger, O. Peleg, A. Halperin, Macromolecules 2010, 43, 6213.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  O. Iliashevsky, L. Amir, R. Glaser, R. S. Marks, N. G. Lemcoff, J. Mater. Chem. 2009, 19, 6616.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmsr7K&md5=a5514dd7a7f6aa8669618a253d311cafCAS |

[7]  J. I. Paez, M. C. Strumia, M. C. G. Passeggi, J. Ferrón, A. M. Baruzzi, V. Brunetti, Electrochim. Acta 2009, 54, 4192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt12rsr0%3D&md5=4791ba7f28470739207ef8c3c9be577bCAS |

[8]  M. Rinaudo, Prog. Polym. Sci. 2006, 31, 603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslCju7o%3D&md5=3ea3bcf2c2a5a59e9c6aa232d48b4c45CAS |

[9]  M. Monier, A. El-Mekabaty, Int. J. Biol. Macromol. 2013, 55, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFWisr4%3D&md5=0cdb5fea537d8f6bd6b55540f4f0e4d2CAS | 23357795PubMed |

[10]  M. Pau Balaguer, R. Gavara, P. Hernández-Muñoz, Food Chem. 2012, 130, 814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmu7zO&md5=33521d48dd66cb606f8e6eb48e9d26e1CAS |

[11]  S.-L. Wang, T.-W. Liang, Y.-H. Yen, Carbohydr. Polym. 2011, 84, 732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVSru7Y%3D&md5=978d208fdce88372caebef00be343f71CAS |

[12]  V. K. Thakur, M. K. Thakur, P. Raghavan, M. R. Kessler, ACS Sustainable Chem. Eng. 2014, 2, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlSrtb0%3D&md5=cb6cdc77786ef2f71f821fd7fefd0809CAS |

[13]  V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Poly. Anal. Charact. 2014, 19, 256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFWnurc%3D&md5=781eabc603cbfd6d5df943092c713fa4CAS |

[14]  V. K. Thakur, M. K. Thakur, R. K. Gupta, Carbohydr. Polym. 2013, 98, 820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOisrrN&md5=5cd4377406809f1e121f478ba50c05f4CAS | 23987417PubMed |

[15]  V. K. Thakur, M. K. Thakur, R. K. Gupta, Carbohydr. Polym. 2013, 97, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2isb0%3D&md5=75f1b7231279b98d14a1e859483564fdCAS | 23769511PubMed |

[16]  V. K. Thakur, M. K. Thakur, ACS Sustainable Chem. Eng. 2014, 2, 2637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGrsL7E&md5=e957b3357db6c5e443e2c985d8bed214CAS |

[17]  V. K. Thakur, M. K. Thakur, Carbohydr. Polym. 2014, 109, 102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotV2htrc%3D&md5=77af47e8d81f6b3b346ac396a79d4f0fCAS | 24815407PubMed |

[18]  V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Biol. Macromol. 2013, 61, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFenur%2FP&md5=0a5a5d0408b2e2e7e8ba70742efa7ed4CAS | 23831536PubMed |

[19]  V. K. Thakur, M. K. Thakur, R. K. Gupta, Int. J. Biol. Macromol. 2013, 62, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWlurbI&md5=2ef671bd93d6c782cd9ba4300281cbc8CAS | 23994197PubMed |

[20]  A. A. Aldana, R. Toselli, M. C. Strumia, M. Martinelli, J. Mater. Chem. 2012, 22, 22670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOmsrbJ&md5=8ec4eb42abe548092cc46a22ac28f1a2CAS |

[21]  G. L. Rorrer, T. Y. Hsien, J. D. Way, Ind. Eng. Chem. Res. 1993, 32, 2170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlt1Wksb8%3D&md5=08480ed3aa676397caebb04af3a4ee9dCAS |

[22]  F.-L. Mi, H.-W. Sung, S.-S. Shyu, J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 2804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Wgtbo%3D&md5=b20514c2ad9994f8f43a887415e6a44dCAS |

[23]  L. Fernandez, M. Calderón, M. Martinelli, M. Strumia, H. Cerecetto, M. González, J. J. Silber, M. Santo, J. Phys. Org. Chem. 2008, 21, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGmtbnJ&md5=f9d377739cf4a9a9e2db387936213b6eCAS |

[24]  L. G. Wade, in Organic Chemistry (Ed. A. Jaworski) 2013, Ch. 19, pp. 439–466 (Pearson: London).

[25]  D. E. S. Santos, C. G. T. Neto, J. L. C. Fonseca, M. R. Pereira, J. Membr. Sci. 2008, 325, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1CiurjK&md5=0bc3803a2e519a42938a263477bd9927CAS |

[26]  A. A. Aldana, M. C. Strumia, M. Martinelli, J. Biomater. Tissue Eng. 2013, 3, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVGgsr0%3D&md5=122073b066795748d1b838bcdb80b511CAS |

[27]  R. Laus, T. G. Costa, B. Szpoganicz, V. T. Fávere, J. Hazard. Mater. 2010, 183, 233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFChtr%2FO&md5=dc40b2ef8431314fdc1c674104ce9702CAS | 20674156PubMed |

[28]  C. K. S. Pillai, W. Paul, C. P. Sharma, Prog. Polym. Sci. 2009, 34, 641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWqtb4%3D&md5=ed7a468d31827de0792918e365ca6f56CAS |

[29]  M. Eichler, V. Katzur, L. Scheideler, M. Haupt, J. Geis-Gerstorfer, G. Schmalz, S. Ruhl, R. Müller, F. Rupp, Biomaterials 2011, 32, 9168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OqurbK&md5=13c29e64fd65ca661cfb9cafdf625da3CAS | 21906807PubMed |

[30]  F. Xi, J. Wu, J. Chromatogr. A 2004, 1057, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsFelurc%3D&md5=e1e683e339c7410c589fad56b6c35a0eCAS | 15584221PubMed |

[31]  S. R. Popuri, Y. Vijaya, V. M. Boddu, K. Abburi, Bioresour. Technol. 2009, 100, 194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFemtLzK&md5=4e8e5b0719e545fb1778954a59226c5aCAS | 18614363PubMed |

[32]  R. Šuláková, R. Hrdina, G. M. B. Soares, Dyes Pigm. 2007, 73, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  U. Boas, P. M. H. Heegaard, Chem. Soc. Rev. 2004, 33, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksb4%3D&md5=70ad9d986c826d61d6869c5d46d9b7ddCAS | 14737508PubMed |

[34]  M. Rajiv Gandhi, G. N. Kousalya, N. Viswanathan, S. Meenakshi, Carbohydr. Polym. 2011, 83, 1082.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. M. Lázaro Martínez, E. Rodríguez-Castellón, R. M. T. Sánchez, L. R. Denaday, G. Y. Buldain, V. Campo Dall’ Orto, J. Mol. Catal. Chem. 2011, 339, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. Hermanek, R. Zboril, I. Medrik, J. Pechousek, C. Gregor, J. Am. Chem. Soc. 2007, 129, 10929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovF2mt74%3D&md5=e1cbac06c9c9010e14d71c67ed622512CAS | 17691785PubMed |

[37]  A. A. Aldana, M. Martinelli, M. Strumia, Macromol. Symp. 2010, 298, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSkuw%3D%3D&md5=7033fb6a5b384ef34e4c4aa4e01d3ba3CAS |

[38]  H. Lee, K. Neville, Handbook of Epoxy Resins 1967 (McGraw-Hill: Michigan).