Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Probing Mechanisms of Aryl–Aryl Bond Cleavages under Flash Vacuum Pyrolysis Conditions

Edward A. Jackson A , Xiang Xue A , Hee Yeon Cho A and Lawrence T. Scott A B
+ Author Affiliations
- Author Affiliations

A Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA.

B Corresponding author. Email: lawrence.scott@bc.edu

Australian Journal of Chemistry 67(9) 1279-1287 https://doi.org/10.1071/CH14171
Submitted: 26 March 2014  Accepted: 23 April 2014   Published: 10 June 2014

Abstract

Several biaryls have been subjected to flash vacuum pyrolysis (FVP) at 1100°C and 0.8–0.9 hPa. Product compositions are reported for the FVP of 9-phenylanthracene (1), 2-bromobiphenyl (5), biphenyl (8), 1,10-diphenylanthracene (12), 9-(2-naphthyl)anthracene (17), and 9,9′-bianthracenyl (20). The experimental results have been used to evaluate four possible mechanistic pathways for the cleavage of aryl–aryl bonds under these conditions: (1) the ‘explosion’ of substituted phenyl radicals; (2) hydrogen atom attachment to an ipso-carbon atom of the biaryl followed by C–C bond cleavage; (3) direct homolysis; and (4) loss of a fragment as an aryne. None of these mechanisms by itself successfully accommodates all of the experimental facts. The data suggest that aryl–aryl bond cleavages under FVP conditions involve at least two different mechanistic pathways and that the relative contributions of the competing pathways probably vary from one biaryl to the next.


References

[1]  R. F. C. Brown, Pyrolytic Methods in Organic Chemistry: Application of Flow and Flash Vacuum Pyrolytic Techniques 1980 (Academic Press: New York, NY).

[2]  R. F. C. Brown, Recl. Trav. Chim. Pays-Bas 1988, 107, 655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkt1aktr4%3D&md5=6a9214baf632df56fd5dd68a62ae2379CAS |

[3]  R. F. C. Brown, Pure Appl. Chem. 1990, 62, 1981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFahtg%3D%3D&md5=009ce3e3f0f5e0b37a27b25f077b2532CAS |

[4]  R. F. C. Brown, F. W. Eastwood, Synlett 1993, 9.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVWmtL4%3D&md5=ed3ccc6e7e3de4cd1f3079e2bd839175CAS |

[5]  R. F. C. Brown, Eur. J. Org. Chem. 1999, 3211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslSgsbc%3D&md5=540dde6857dcf4f0a9a413df3db7e48cCAS |

[6]  C. Wentrup, Chimia (Aarau) 1977, 31, 258.
         | 1:CAS:528:DyaE2sXltlehs7Y%3D&md5=3ea677b72351a31e5be9de463d2a760aCAS |

[7]  C. Wentrup, Lect. Heterocycl. Chem. 1984, 7, 91.
         | 1:CAS:528:DyaL2cXmtFWjs74%3D&md5=97b1afae2fe24ae6091d810a2c6b6ab9CAS |

[8]  H. McNab, Contemp. Org. Synth. 1996, 3, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvVyitr4%3D&md5=c9125e6b16f514e05aea8ba42008f29cCAS |

[9]  H. McNab, Aldrichim Acta 2004, 37, 19.
         | 1:CAS:528:DC%2BD2cXksVSntbo%3D&md5=70b71b7774c427755fed124334e699d7CAS |

[10]  L. T. Scott, Accounts Chem. Res. 1982, 15, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XosVOntg%3D%3D&md5=34d61a598b15c7c047947c3edb4e74d5CAS |

[11]  L. T. Scott, Chem. Aust. 1987, 54, 298.
         | 1:CAS:528:DyaL1cXktVGrsL4%3D&md5=324335e1bdef627b7b17e44256733839CAS |

[12]  L. T. Scott, Pure Appl. Chem. 1996, 68, 291.
         | 1:CAS:528:DyaK28Xitleisr0%3D&md5=a3b3a31b7a83a23fe29d9a2c384432cbCAS |

[13]  A. Necula, L. T. Scott, J. Anal. Appl. Pyrolysis 2000, 54, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFyju7g%3D&md5=b00d9907f89171bdfb1e873caa7e8d81CAS |

[14]  L. T. Scott, M. M. Hashemi, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1991, 113, 7082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlGlt7Y%3D&md5=471efaf1661c0dbdb5ff0b03f541e5d8CAS |

[15]  L. T. Scott, M. S. Bratcher, S. Hagen, J. Am. Chem. Soc. 1996, 118, 8743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFektb4%3D&md5=c22858d735fe1ea9a2c30acc94d64160CAS |

[16]  S. Hagen, M. S. Bratcher, M. S. Erickson, G. Zimmermann, L. T. Scott, Angew. Chem. Int. Ed. Engl. 1997, 36, 406.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVajurg%3D&md5=ef0f370a3e34c0777ae5d4295d99647fCAS |

[17]  L. T. Scott, P.-C. Cheng, M. M. Hashemi, M. S. Bratcher, D. T. Meyer, H. B. Warren, J. Am. Chem. Soc. 1997, 119, 10963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1Ohurg%3D&md5=5182c10c6a24c61abf43526b6a65a58bCAS |

[18]  V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOmtLrJ&md5=b0901e0a3ae748f90dee9250daa1222fCAS | 17165678PubMed |

[19]  L. T. Scott, E. A. Jackson, Q. Zhang, B. D. Steinberg, M. Bancu, B. Li, J. Am. Chem. Soc. 2012, 134, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGmtL%2FL&md5=dc85e572d947b7f83893700814e92a1aCAS | 22133011PubMed |

[20]  L. T. Scott, M. M. Boorum, B. J. McMahon, S. Hagen, J. Mack, J. Blank, H. Wegner, A. de Meijere, Science 2002, 295, 1500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFyqsL0%3D&md5=33130bc62f5d493d782d7f2ca4d30395CAS | 11859187PubMed |

[21]  L. T. Scott, Angew. Chem. Int. Ed. 2004, 43, 4994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKrs7g%3D&md5=5ae91a6c5b7c2e64d1430a3a6a97f34cCAS |

[22]  X. Xue, L. T. Scott, Org. Lett. 2007, 9, 3937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslSitrc%3D&md5=0a4211631ee757db760b70131a41df4fCAS | 17760450PubMed |

[23]  X. Xue, Mechanistic Studies on the Thermal Cyclodehydrogenations of Polycyclic Aromatic Hydrocarbons 2008, Ph.D. thesis, Boston College, Chestnut Hill, Massachusetts, USA.

[24]  L. T. Scott, N. H. Roelofs, J. Am. Chem. Soc. 1987, 109, 5461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsVGgug%3D%3D&md5=8d78fe0164cdbd57d6970734eee6e499CAS |

[25]  L. T. Scott, N. H. Roelofs, Tetrahedron Lett. 1988, 29, 6857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFKktLw%3D&md5=8098965415995ce9a2a0e6147e6aae99CAS |

[26]  L. T. Scott, M. M. Hashemi, T. H. Schultz, M. B. Wallace, J. Am. Chem. Soc. 1991, 113, 9692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsl2itbY%3D&md5=c108cf23537aa923a4ba27f28ae6c3bbCAS |

[27]  R. D. Smith, Combust. Flame 1979, 35, 179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkvFers7Y%3D&md5=14803c52c5e2c65c47c7d82259bc6df0CAS |

[28]  A. Laskin, A. Lifshitz, in Proceedings of the 26th International Symposium on Combustion 1996, pp. 669–675 (The Combustion Institute: Pittsburgh, PA).

[29]  B. Negru, S. J. Goncher, A. L. Brunsvold, G. M. P. Just, D. Park, D. M. Neumark, J. Chem. Phys. 2010, 133, 074302.
         | Crossref | GoogleScholarGoogle Scholar | 20726637PubMed |

[30]  L. K. Madden, L. V. Moskaleva, S. Kristyan, M. C. Lin, J. Phys. Chem. A 1997, 101, 6790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFymsL4%3D&md5=cb7faa90a4bc8d3867e3f458cb136bc5CAS |

[31]  H. Wang, A. Laskin, N. W. Moriarty, M. Frenklach, Proc. Combust. Inst. 2000, 28, 1545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Ghur4%3D&md5=9500fd5433c4239c9bd358075038e204CAS |

[32]  M. A. Brooks, L. T. Scott, J. Am. Chem. Soc. 1999, 121, 5444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlWqs7c%3D&md5=48888bc3ac129fc9c801029a2751804aCAS |

[33]  M. Ladacki, M. Szwarc, J. Chem. Phys. 1952, 20, 1814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXislOrsA%3D%3D&md5=38d448cb3e5b10e0385951f40b05963dCAS |

[34]  M. Szwarc, D. Williams, P. Roy. Soc. A 1953, 219, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhslaktA%3D%3D&md5=8a574a6d50093853ef72085c1385823fCAS |

[35]  A. Necula, L. T. Scott, Polycyclic Aromat. Compd. 2010, 30, 260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGku7jE&md5=b450dfaa8b8d6414ff6987fcb8cbb06aCAS |

[36]  R. F. C. Brown, N. Choi, K. J. Coulston, F. W. Eastwood, U. E. Wiersum, L. W. Jenneskens, Tetrahedron Lett. 1994, 35, 4405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlelt7o%3D&md5=642bb5f443a5ebf168277740fa8a9dd1CAS |

[37]  For a previous synthesis of 1,10-diphenylanthracene (12), see S. C. Dickerman, D. De Souza, P. Wolf, J. Org. Chem. 1965, 30, 1981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXktFKktrg%3D&md5=572c0710816493bdfcefc0655c7180d3CAS |

[38]  The 1H NMR spectral data for rubicene were found in V. Sachweh, H. Langhals, Chem. Ber. 1990, 123, 1981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlSqsbk%3D&md5=940ead9bce5c45ac9a945771360e42d6CAS |

[39]  Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds 2002 (CRC Press: Boca Raton, FL).

[40]  For a recent synthesis of 9-(2-naphthyl)anthracene (17), see M. Xu, X. Li, Z. Sun, T. Tu, Chem. Commun. 2013, 49, 11539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyht7nE&md5=46d5cedb10fa5f009857f819623c6d8cCAS |

[41]  F. Bell, D. H. Waring, J. Chem. Soc. 1949, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXktFCisw%3D%3D&md5=8fff381de78a7614dad17e3bf4862b10CAS |

[42]  I. Tanimoto, K. Kushioka, T. Kitagawa, K. Maruyama, Bull. Chem. Soc. Jpn. 1979, 52, 3586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkt1Kit78%3D&md5=0ad5858b78273c57871ba3c662cec01eCAS |