A Metal-Free and Ionic Liquid-Catalyzed Aerobic Oxidative Bromination in Water
Jian Wang A , Shu-Bin Chen A , Shu-Guang Wang A and Jing-Hua Li A BA College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, China.
B Corresponding author. Email: lijh@zjut.edu.cn
Australian Journal of Chemistry 68(3) 513-517 https://doi.org/10.1071/CH14161
Submitted: 26 March 2014 Accepted: 12 July 2014 Published: 6 October 2014
Abstract
A metal-free aerobic oxidative bromination of aromatic compounds in water has been developed. Hydrobromic acid is used as a bromine source and 2-methylpyridinium nitrate ionic liquid is used as a recyclable catalyst. Water is used as the reaction mediate. This is the first report of aerobic oxidative bromination using only catalytic amount of metal-free catalyst. This system shows not only high bromine atom economy, but also high bromination selectivity. The possible mechanism and the role of the catalyst in this system have also been discussed.
References
[1] (a) Ullmann’s Encyclopedia of Industrial Chemistry 6th Edn 2002 (Wiley-VCH: Weinheim).(b) Kirk-Othmer Encyclopedia of Chemical Technology 6th Edn, Vol. 5 1993 (Wiley: New York, NY).
[2] (a) R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2jtbvE&md5=5b6a649e6778631cbb1df6d2bb91db42CAS | 21655588PubMed |
(b) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Y. Nishina, J. Morita, B. Ohtani, RSC Advances 2013, 3, 2158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVygtbw%3D&md5=0919ec85c63bcfc384f79120c5e1b91bCAS |
(b) Y. Nishina, K. Takami, Green Chem. 2012, 14, 2380.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. E. Podall, W. E. Foster, J. Org. Chem. 1958, 23, 280.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Adams, C. S. Marvel, Org. Synth. 1921, 1, 39.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Mokhtary, M. M. Lakouraj, Chin. Chem. Lett. 2011, 22, 13.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2mtLfP&md5=12ff48e6b43ae84cae5df2b74a9e2de3CAS |
(b) S. Kumar Chaudhuri, S. Roy, M. Saha, S. Bhar, Synth. Commun. 2007, 37, 271.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. M. Heravi, N. Abdolhosseini, H. A. Oskooie, Tetrahedron Lett. 2005, 46, 8959.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. M. Kosolapoff, J. Am. Chem. Soc. 1953, 75, 3596.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) S. Adimurthy, G. Ramachandraiah, A. V. Bedekar, S. Ghosh, B. C. Ranu, P. K. Ghosh, Green Chem. 2006, 8, 916.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCiu7rL&md5=1ccf1f1f5b2caec0fde4fbb6b134c62dCAS |
(b) H. Tajik, F. Shirini, P. Hassan‐zadeh, H. Rafiee Rashtabadi, Synth. Commun. 2005, 35, 1947.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Kikuchi, S. Sakaguchi, Y. Ishii, J. Org. Chem. 1998, 63, 6023.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. Stark, Ber. Dtsch. Chem. Ges. 1910, 43, 670.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) B. Li, L. Gao, F. Bian, W. Yu, Tetrahedron Lett. 2013, 54, 1063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFSruw%3D%3D&md5=2c261722b47c704c340e77859d2466edCAS |
(b) R. Zhang, L. Huang, Y. Zhang, X. Chen, W. Xing, J. Huang, Catal. Lett. 2012, 142, 378.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. P. Singh, T. Thatikonda, K. A. A. Kumar, S. D. Sawant, B. Singh, A. K. Sharma, P. R. Sharma, D. Singh, R. A. Vishwakarma, J. Org. Chem. 2012, 77, 5823.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Mo, J. M. Yan, D. Qiu, F. Li, Y. Zhang, J. Wang, Angew. Chem., Int. Ed. 2010, 49, 2028.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Horner, E. H. Winkelmann, Angew. Chem. 1959, 71, 349.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) L. S. de Almeida, M. C. S. de Mattos, P. M. Esteves, Synlett 2013, 24, 603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosl2jsL0%3D&md5=4f58f1a525e2c15fe21336ae08a4d955CAS |
(b) G. Hernández-Torres, B. Tan, C. F. Barbas, Org. Lett. 2012, 14, 1858.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Alinezhad, S. M. Tavakkoli, F. Salehian, Synth. Commun. 2010, 40, 3226.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Toda, J. Schmeyers, Green Chem. 2003, 5, 701.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. Fuchs, Y. Belsky, E. Tartakovsky, J. Zizuashvili, S. Weinman, J. Chem. Soc., Chem. Commun. 1982, 14, 778.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) M. Dey, S. S. Dhar, Green Chem. Lett. Rev. 2012, 5, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVKitr8%3D&md5=704eb2a460cfa05031b420450fad4eb3CAS |
(b) R. Cristiano, A. D. Walls, R. G. Weiss, J. Phys. Org. Chem. 2010, 23, 904.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Cristiano, K. Ma, G. Pottanat, R. G. Weiss, J. Org. Chem. 2009, 74, 9027.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. P. Borikar, T. Daniel, V. Paul, Tetrahedron Lett. 2009, 50, 1007.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. Ma, S. Li, R. G. Weiss, Org. Lett. 2008, 10, 4155.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) L.-M. Yang, X.-L. Li, W. Wu, X.-H. Fan, RSC Advances 2013,
(b) G.-W. Wang, J. Gao, Green Chem. 2012, 14, 1125.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Schmidt, A. Stolle, B. Ondruschka, Green Chem. 2012, 14, 1673.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Zhou, X. He, Synthesis 2011, 2011, 207.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. G. Syvret, K. M. Butt, T. P. Nguyen, V. L. Bulleck, R. D. Rieth, J. Org. Chem. 2002, 67, 4487.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) S. M. Islam, A. S. Roy, P. Mondal, N. Salam, S. Paul, Catal. Lett. 2013, 143, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKnt73N&md5=3a7ca1ce86ab7018bb72c7318622e3baCAS |
(b) P. Galloni, M. Mancini, B. Floris, V. Conte, Dalton Trans. 2013, 42, 11963.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Wischang, J. Hartung, Tetrahedron 2012, 68, 9456.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Yonehara, K. Kamata, K. Yamaguchi, N. Mizuno, Chem. Commun. 2011, 47, 1692.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem., Int. Ed. 2009, 48, 8424.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) S. Mo, Y. Zhu, Z. Shen, Org. Biomol. Chem. 2013, 11, 2756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltl2itro%3D&md5=186de4e5e5887cb5c713df0a6a8f4e26CAS | 23446816PubMed |
(b) Z. Huang, F. Li, B. Chen, T. Lu, Y. Yuan, G. Yuan, ChemSusChem 2013, 6, 1337.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. H. Liu, R. Ma, M. Zhang, L.-N. He, Catal. Today 2012, 194, 38.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. H. Liu, L. N. He, F. Hua, Z. Z. Yang, C. B. Huang, B. Yu, B. Li, Adv. Synth. Catal. 2011, 353, 3187.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Neumann, I. Assael, J. Chem. Soc., Chem. Commun. 1988, 19, 1285.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) R. Prebil, K. K. Laali, S. Stavber, Org. Lett. 2013, 15, 2108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltV2ntb0%3D&md5=e25749356be9fe3d4fc19d7fc5c01adeCAS | 23547879PubMed |
(b) M. Noè, A. Perosa, M. Selva, L. Zambelli, Green Chem. 2010, 12, 1654.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Chiappe, E. Leandri, M. Tebano, Green Chem. 2006, 8, 742.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Earle, S. P. Katdare, K. R. Seddon, Org. Lett. 2004, 6, 707.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Wang, W. Wang, J.-H. Li, Green Chem. 2010, 12, 2124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyrurbF&md5=fb980ef8671b299551669937df41d3b5CAS |
[14] (a) M. Kimura, M. Sato, T. Murase, K. Tsukahara, Bull. Chem. Soc. Jpn. 1993, 66, 2900.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjvFeqsA%3D%3D&md5=5a1c984c35676fb6c4d09bfde598920fCAS |
(b) F. Radner, J. Org. Chem. 1988, 53, 3548.
| Crossref | GoogleScholarGoogle Scholar |