Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Hydrothermal Synthesis, Crystal Structures, and Photoluminescent Properties of Metal–Organic Frameworks Derived from 3,5-Bis(benzimidazol-1-yl)pyridine and Dicarboxylic Acids

Jiakun Xu A B E , Xiaochun Sun C , Xingchen Yan B D , Dongmei Zhang B and Mi Sun A E
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

B Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.

C National Oceanographic Centre, Qingdao 266071, China.

D Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

E Corresponding authors. Email: chenfeng858652@163.com; hhsunmi@yeah.net

Australian Journal of Chemistry 67(6) 901-906 https://doi.org/10.1071/CH13633
Submitted: 18 November 2013  Accepted: 29 January 2014   Published: 6 March 2014

Abstract

We successfully synthesized two new metal coordination polymers [Cd3(bdc)3(L)3(H2O)3]n (1) and [Co(tda)(L)]n (2) (H2bdc = 1,2-benzenedicarboxylic acid, H2tda = 2,5-thiophendicarboxylic acid, and L = 3,5-bis(benzimidazol-1-yl)pyridine), which were then characterized by IR, and elemental, X-ray powder diffraction, and X-ray single-crystal diffraction analysis. Complex 1 possesses a uninodal three-connected hcb Shubnikov hexagonal plane net with {63} topology. Complex 2 features a three-connected topological net with {82·10} topology (so-called ‘tongue-and-groove’ structure). A typical T-shaped molecular bilayer motif, which has rarely been reported previously, was successfully constructed by strategically selecting H2tda as the second ligand. In addition, the solid-state photoluminescent spectra of 1 and 2 were measured at room temperature.


References

[1]  (a) R. Poloni, B. Smit, J. B. Neaton, J. Am. Chem. Soc. 2012, 134, 6714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWms78%3D&md5=d0e4860fe8a7d69452a33772e04c2c76CAS | 22463719PubMed |
      (b) J. Y. Zou, H. L. Gao, S. Shi, J. Z. Cui, P. Cheng, CrystEngComm 2013, 15, 2682.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. C. Huxford, J. D. Rocca, W. Lin, Curr. Opin. Chem. Biol. 2010, 14, 262.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. F. Ma, M. L. Han, J. H. Qin, L. Y. Wang, M. Du, Inorg. Chem. 2012, 51, 9431.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. B. Lalonde, O. K. Farha, K. A. Scheidt, J. T. Hupp, ACS Catal. 2012, 2, 1550.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) G. Lu, J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 7832.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang, Inorg. Chem. 2012, 51, 9677.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) J. K. Xu, X. C. Sun, Y. H. Fan, C. F. Bi, M. Sun, Z. Anorg. Allg. Chem. 2012, 638, 1512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvV2rtLc%3D&md5=adb7ffb803aeb699f8738f129caa42e3CAS |
      (b) S. S. Chen, Y. Zhao, J. Fan, T. Okamura, Z. S. Bai, Z. H. Chen, W. Y. Sun, CrystEngComm 2012, 14, 3564.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) J. K. Xu, X. C. Sun, C. X. Ju, L. R. Yang, C. F. Bi, M. Sun, J. Coord. Chem. 2013, 66, 2693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptlGgsLg%3D&md5=a0ad63238b3d183768c2e5578367ecd6CAS |
      (b) L. L. Zhai, Y. Zhao, L. Luo, P. Wang, Q. Liu, K. Chen, W. Y. Sun, Microporous Mesoporous Mater. 2014, 187, 86.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Zhao, L. L. Zhai, W. Y. Sun, Chinese J. Inorg. Chem. 2014, 30, 99.

[4]  V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Cryst. 2000, 33, 1193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsl2itrc%3D&md5=d4e6122e36dad96d9e03b97cdffe7165CAS |

[5]  V. A. Blatov, M. O’Keeffe, D. M. Proserpio, CrystEngComm 2010, 12, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ohug%3D%3D&md5=2dac558ce81bc9be6538bfaa7334fcedCAS |

[6]  T. G. Mitina, V. A. Blatov, Cryst. Growth Des. 2013, 13, 1655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCgsL8%3D&md5=2454b556b863ac438f767bc02d3add67CAS |

[7]  X. L. Sun, Z. J. Wang, S. Q. Zang, W. C. Song, C. X. Du, Cryst. Growth Des. 2012, 12, 4431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVynsLrF&md5=c0c9c3ce984c8ea22e75b7f7595dbfcbCAS |

[8]  W. Chen, J. Y. Wang, C. Chen, Q. Yue, H. M. Yuan, J. S. Chen, S. N. Wang, Inorg. Chem. 2003, 42, 944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFKnuw%3D%3D&md5=2ab08503a88999bb2218ba2c857c5a3dCAS | 12588123PubMed |

[9]  (a) L. L. Liu, J. J. Huang, X. L. Wang, G. C. Liu, S. Yang, H. Y. Lin, Inorg. Chim. Acta 2013, 394, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1elsrvM&md5=d9748777526694e43cc78e6543161a67CAS |
      (b) M. Liu, Z. P. Yang, W. H. Sun, X. P. Li, J. Li, J. S. Ma, G. Q. Yang, Inorg. Chim. Acta 2009, 362, 2884.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Hua, Z. Su, Y. Zhao, T. Okamura, G. C. Xu, W. Y. Sun, N. Ueyama, Inorg. Chim. Acta 2010, 363, 3550.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Feng, L. L. Zhou, L. Y. Wang, J. G. Zhou, Z. Q. Shi, J. J. Shang, Inorg. Chim. Acta 2013, 394, 696.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. J. Cao, Y. Liu, L. Y. G. Li, Inorg. Chim. Acta 2012, 392, 16.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. F. Liu, W. F. Wu, C. Q. Wan, C. H. He, C. H. Jiao, G. H. Cui, J. Coord. Chem. 2011, 64, 975.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Y. Y. Liu, J. C. Ma, L. P. Zhang, J. F. Ma, J. Coord. Chem. 2008, 61, 3583.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. L. Hu, D. P. Cheng, J. G. Liu, D. J. Xu, J. Coord. Chem. 2001, 53, 7.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) D. P. Cheng, C. G. Feng, M. L. Hu, Y. Q. Zheng, D. J. Xu, Y. Z. Xu, J. Coord. Chem. 2001, 52, 245.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  SMART and SAINT, Area Detector Control and Integration Software 1996 (Siemens Analytical X-Ray Systems, Inc.: Madison, WI).

[11]  SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).

[12]  G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution 1997 (University of Göttingen: Göttingen, Germany).

[13]  G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany,.

[14]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=769cfd323e07ca2653f64f077bf0719bCAS |

[15]  K. Brandenburg, Diamond, Version 3.1d 2006 (Crystal Impact GbR: Bonn, Germany).