Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Isolation and Structure of a Hydrogen-bonded 2,2′:6′,2″-Terpyridin-4′-one Acetic Acid Adduct

Pas Florio A , Campbell J. Coghlan A , Chih-Pei Lin A , Kei Saito A , Eva M. Campi A , W. Roy Jackson A and Milton T. W. Hearn A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding author. Email: milton.hearn@monash.edu

Australian Journal of Chemistry 67(4) 651-656 https://doi.org/10.1071/CH13571
Submitted: 21 October 2013  Accepted: 27 November 2013   Published: 6 January 2014

Abstract

Herein, we report the crystal structure of a key intermediate in the synthesis of 4′-substituted-terpyridines. Our findings confirm that the terpyridin-4′-one intermediate as generated from the condensation reaction of the corresponding triketone precursor with ammonium acetate is isolated as a hydrogen-bonded adduct with acetic acid, and not, as previously reported, as the acetate salt of a protonated pyridine nitrogen. This finding provides a rationale for the behaviour and structure of substituted terpyridin-4′-ones and pyridones in both the solid state and in solution.


References

[1]  U. S. Schubert, H. Hofmeier, G. R. Newkome, Modern Terpyridine Chemistry 2006 (Wiley-VCH: Weinheim).

[2]  A. Winter, G. R. Newkome, U. S. Schubert, ChemCatChem. 2011, 3, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmurvN&md5=28c59009aa816d3e8151745e56ed2f49CAS |

[3]  J. B. Stimmel, F. C. Kull, Nucl. Med. Biol. 1998, 25, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1yntg%3D%3D&md5=9122911b6f88653d8b43e0d3e4d0f6feCAS | 9468026PubMed |

[4]  J. Costa, R. Ruloff, L. Burai, L. Helm, A. E. Merbach, J. Am. Chem. Soc. 2005, 127, 5147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVyqu7o%3D&md5=de8d392a355a9a431d7af32178fbf16aCAS | 15810849PubMed |

[5]  I. Eryazici, O. k. Farha, O. C. Compton, C. Stern, J. T. Hupp, S. T. Nguyen, J. Chem. Soc., Dalton Trans. 2011, 9189.
         | 1:CAS:528:DC%2BC3MXhtFagtbfE&md5=194c8a78fa9364cd271deded1c905b53CAS |

[6]  A. D’Aléo, E. Cecchetto, L. De Cola, R. M. Williams, Sensors 2009, 9, 3604.
         | Crossref | GoogleScholarGoogle Scholar | 22412328PubMed |

[7]  F. H. Arnold, Nat. Biotechnol. 1991, 9, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlSrs7g%3D&md5=a6c92f9f8e87d48e44a22ddb5d84ef34CAS |

[8]  E. C. Constable, M. D. Ward, J. Chem. Soc., Dalton Trans. 1990, 1405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFWnt7Y%3D&md5=0592dc2e9dd1f127c13b823820f29eb8CAS |

[9]  R. Lunkwitz, G. Pabst, G. Scherr, US Patent 6 784 296 2004.

[10]  J. D. Holbrey, G. J. T. Tiddy, D. W. Bruce, J. Chem. Soc., Dalton Trans. 1995, 1769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFOnsLs%3D&md5=8b37a9031f3da23568a97c59e6b4ac8dCAS |

[11]  K. T. Potts, D. Konwar, J. Org. Chem. 1991, 56, 4815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslWgsbc%3D&md5=ff1bfa883f049a1ff1169d9438a97d52CAS |

[12]  E. Murguly, T. B. Norsten, N. Branda, J. Chem. Soc., Perkin Trans. 2 1999, 2789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsF2isbs%3D&md5=f4d66bb912a80a583cca68afe4c57de3CAS |

[13]  T. Wieprecht, J. Xia, U. Heinz, J. Dannacher, G. Schlingloff, J. Mol. Catal. A 2003, 203, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1ans7Y%3D&md5=53ffd3b9c5feec09398b3bd1a1d3276cCAS |

[14]  E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, D. J. Nesbitt, Pure Appl. Chem. 2011, 83, 1637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Orsb7F&md5=9b6b6bf5ffefccaae5f12b2514067388CAS |

[15]  E. Pretsch, J. Seibl, T. Clerc, W. Simon, Tables of Spectral Data for Structure Determination of Organic Compounds 2nd Edn 1989 (Springer-Verlag: Berlin).

[16]  T. Fukunaga, S. Kashino, H. Ishida, Acta Crystallogr. 2004, C60, o718.
         | 1:CAS:528:DC%2BD2cXotFSgt70%3D&md5=ae2b1f64a3a68a902ef414fcdd319585CAS |

[17]  R. A. Fallahpour, M. Neuburger, M. Zehnder, Polyhedron 1999, 18, 2445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlakur8%3D&md5=c3a538864c9dff3eaf56b2416e738457CAS |

[18]  R. A. Fallahpour, M. Neuburger, M. Zehnder, New J. Chem. 1999, 23, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVSmsQ%3D%3D&md5=6458e88f31dc70ae3b95094b45702a1dCAS |

[19]  P. Beak, Acc. Chem. Res. 1977, 10, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1Wltbo%3D&md5=d736ccfc61b76bb2f02bff38c1c1aa82CAS |

[20]  P. G. Jones, Acta Crystallogr. 2001, C57, 880.
         | 1:CAS:528:DC%2BD3MXkvFant7c%3D&md5=44f19938c0fb99bf62b73a0c8c54fb7aCAS |

[21]  A. Tyl, M. Nowak, J. Kusz, Acta Crystallogr. 2008, C64, 661.

[22]  C. Li, P. D. Robinson, J. D. Dyer, Acta Crystallogr. 2006, C62, o336.
         | 1:CAS:528:DC%2BD28XlsVKntrk%3D&md5=7f16295555c2a014f1583362623bb11dCAS |

[23]  D. Cook, Can. J. Chem. 1963, 41, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjslWmug%3D%3D&md5=c0a4990f5d7e68b73120a2896d155b15CAS |

[24]  K. Yamaguchi, J. Mass Spectrom. 2003, 38, 473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVKqtr0%3D&md5=9895037c4c15b65c6a95088b8a305f31CAS | 12794868PubMed |

[25]  J. H. Clark, M. Green, R. Madden, C. D. Reynolds, Z. Dauter, J. M. Miller, T. Jones, J. Am. Chem. Soc. 1984, 106, 4056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlymtL8%3D&md5=cfa8407f97cee5df5b47e49d3e8f5556CAS |

[26]  Bruker Apex2 v2.0 2005 (Bruker AXS: Madison, WI).

[27]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.