Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Class of Computationally Designed Tri-Coordinate Cyclic Silylenes RSi(μ-R)2AlR2

Jing Xu A and Yi-Hong Ding A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.

B Corresponding author. Email: yhdd@jlu.edu.cn

Australian Journal of Chemistry 67(5) 740-748 https://doi.org/10.1071/CH13489
Submitted: 16 September 2013  Accepted: 4 December 2013   Published: 17 January 2014

Abstract

With the aim of designing novel low-valent silylenes, herein we report the first systematic investigation of the SiAlR5 system. Based on the ‘topology’ isomeric search strategy, four classes of isomers, i.e. RSi(μ-R)2AlR2 1, R3Si-AlR2 2, R2Si(μ-R)AlR2 3, and R2Si-AlR3 4 were identified. For 12 groups with an electron lone-pair, i.e. R = F, NH2,OH, SH, OMe, PMe2, SMe, OEt, PEt2, SEt, OPh, and PPh2, the tri-coordinate silylene 1 is the most stable structure, which contains two sets of intermolecular donor–acceptor interactions. In accordance with the ‘silylene’ term, the Si-centre can undergo both a nucleophilic reaction and insertion reaction. Moreover, coupling AlR3 (R = OR′ and PR′2) (R′ = H, Me, Et, and Ph) with the known cyclic di-coordinate silylene could lead to stable tri-coordinate silylenes. These novel tri-coordinate silylenes strongly welcome laboratory studies in near future.


References

[1]  P. P. Gaspar, R. West, in The Chemistry of Organic Silicon Compounds (Eds Z. Rappoport, Y. Apeloig) 1998, Vol. 2, Part 3, pp. 2463–2567 (Wiley: Chichester).

[2]  (a) For references about silylene, please see: S. Nagendran, H. W. Roesky, Organometallics 2008, 27, 457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKlt7s%3D&md5=209bc578b3a06d6783f491e4e32fad6fCAS |
      (b) Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. K. Mandal, H. W. Roesky, Chem. Commun. 2010, 46, 6016.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) S. S. Sen, S. Khan, P. P. Samuel, H. W. Roesky, Chem. Sci. 2012, 3, 659.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  S. Tsutsui, K. Sakamoto, M. Kira, J. Am. Chem. Soc. 1998, 120, 9955.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWltLo%3D&md5=c148352a4fdd70f9c04edb0a983e0550CAS |

[4]  G. H. Lee, R. West, T. Müller, J. Am. Chem. Soc. 2003, 125, 8114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2ku70%3D&md5=534712f23ea4ad304abbb26ab7e5b497CAS | 12837076PubMed |

[5]  M. Veith, E. Werle, R. Lisowsky, R. Koppe, H. Schnöckel, Chem. Ber. 1992, 125, 1375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVyrurY%3D&md5=6feeba50ba4f141103e9b0adeb0d34edCAS |

[6]  A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVKnsLs%3D&md5=aac7df90d2c40e5aa6cfc6c24eaa9988CAS | 22443679PubMed |

[7]  (a) M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFOrsb8%3D&md5=de79c1f67cf89ad53bb117aa351722a4CAS |
      (b) M. Driess, S. Yao, M. Brym, C. van Wüellen, D. Lentz, J. Am. Chem. Soc. 2006, 128, 9628.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Yao, M. Brym, C. van Wüellen, M. Driess, Angew. Chem. Int. Ed. 2007, 46, 4159.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  C.-W. So, H. W. Roesky, J. Magull, R. B. Oswald, Angew. Chem. Int. Ed. 2006, 45, 3948.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1arsrY%3D&md5=181b77e5cb3bedab509c445283224285CAS |

[9]  M. Weidenbruch, Angew. Chem. Int. Ed. 2006, 45, 4241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFWqtrs%3D&md5=4c8c4997b2eaf554d767d99089134f41CAS |

[10]  C.-W. So, H. W. Roesky, P. M. Gurubasavaraj, R. O. Oswald, M. T. Gamer, P. G. Jones, S. Blaurock, J. Am. Chem. Soc. 2007, 129, 12049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWis7nJ&md5=576ccbe8daa621650002baf2d9bf7d4bCAS | 17845044PubMed |

[11]  F. Armbruster, I. Fernández, F. Breher, Dalton Trans. 2009, 5612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2htL8%3D&md5=bdb1b16afeda6dba87df8a9f7755fd67CAS | 20449074PubMed |

[12]  R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOrtb8%3D&md5=e4ae550e903977fbc2cca951989d1426CAS |

[13]  A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOrtLY%3D&md5=df6afe04c68c366ab26b92fd797de9d6CAS |

[14]  M. J. Cowley, V. Huch, H. S. Rzepa, D. Scheschkewitz, Nat. Chem. 2013, 5, 876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVerurzO&md5=ddb98e65cbb67d3c344f9fadafe47e03CAS | 24056345PubMed |

[15]  A. C. Filippou, O. Chernov, B. Blom, K. W. Stumpf, G. Schnakenburg, Chem. – Eur. J. 2010, 16, 2866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislKgu7o%3D&md5=7d8e9473f73066ed0655094095cd35f9CAS | 20077546PubMed |

[16]  H. Tanaka, M. Ichinohe, A. Sekiguchi, J. Am. Chem. Soc. 2012, 134, 5540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVynsL0%3D&md5=1dcc25909715ecbb0327192187e94dc8CAS | 22420634PubMed |

[17]  R. Dorta, E. D. Stevens, N. M. Scott, C. Costabile, L. Cavallo, C. D. Hoff, S. P. Nolan, J. Am. Chem. Soc. 2005, 127, 2485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFSqtg%3D%3D&md5=19bf104ed1e90fc13d095f5cf9b3dca6CAS | 15725003PubMed |

[18]  Y. Apeloig, T. Müller, J. Am. Chem. Soc. 1995, 117, 5363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFert7o%3D&md5=325196f08cedde21cfbfd39c80f14e8aCAS |

[19]  M. Takahashi, S. Tsutsui, K. Sakamoto, M. Kira, T. Müller, Y. Apeloig, J. Am. Chem. Soc. 2001, 123, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFaks7Y%3D&md5=7b7e9a38d7238c99decac6548e096481CAS | 11456528PubMed |

[20]  A. T. Schmedake, M. Haaf, Y. Apeloig, T. Müller, S. Bukalov, R. West, J. Am. Chem. Soc. 1999, 121, 9479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVOnu7Y%3D&md5=38c167b0e2030739ead037cd333ee965CAS |

[21]  G. Li, Q. Li, W. Xu, Y. Xie, H. F. Schaefer, Mol. Phys. 2001, 99, 1053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFGqtrw%3D&md5=cbd17c62e3ede508dfe4d8bf69e1e100CAS |

[22]  H. H. Karsch, D.-C. U. Keller, S. Gamper, G. Müller, Angew. Chem. Int. Ed. 1990, 102, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFyms78%3D&md5=838ef2966eede07c337d6443e2df3c32CAS |

[23]  M. Veith, H. Lange, A. Belo, O. Recktenwald, Chem. Ber. 1985, 118, 1600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvVOqtr4%3D&md5=86349fa854e60d1ced91adbad5c0b782CAS |

[24]  M. Veith, S. Weidner, K. Kunze, D. Käfer, J. Hans, V. Huch, Coord. Chem. Rev. 1994, 137, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFartL0%3D&md5=38ff0077cf66a5b1fa77d173cc892b2eCAS |

[25]  M. Veith, Chem. Rev. 1990, 90, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXnslamtw%3D%3D&md5=5bf53c2b0a9eb1b4f89aa2fecf51ac2eCAS |

[26]  The term ‘disilene’ is used to describe a compound with doubly bonded Si–Si.

[27]  The term ‘disilylene’ is used to describe a compound that is formed by the direct combination between two silylenes with little or no Si–Si bonding.

[28]  W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory 2000 (Wiley-VCH: Weinheim).

[29]     (a) R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).
      (b) A. D. Becke, J. Chem. Phys. 1992, 96, 2155.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  X. Jing, D. Yi-hong, ‘Topology Strategy’ code 2011, Jilin University, Changchun, P. R. China.

[31]  (a) J. Cizek, Adv. Chem. Phys. 1969, 14, 35.
         | 1:CAS:528:DyaE38XhsVCqsr4%3D&md5=5773e801f5a29cd4d15da8f807ee4162CAS |
      (b) G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. E. Scuseria, C. L. Janssen, H. F. Schaefer, J. Chem. Phys. 1988, 89, 7382.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  (a) L. A. Curtiss, K. Raghavachari, P. C. Redfem, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, 109, 7764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVeruro%3D&md5=73db643a6590f982ff8f65cc9658de9bCAS |
      (b) A. G. Baboul, L. A. Curtiss, P. C. Redfem, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  (a) K. B. Wiberg, Tetrahedron 1968, 24, 1083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXlvV2qsQ%3D%3D&md5=e7538e829438105c2b16b12345467aebCAS |
      (b) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).

[35]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).

[36]  T. A. Rokob, A. Hamza, A. Stirling, T. Soós, I. Pápai, Angew. Chem. Int. Ed. 2008, 47, 2435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGlsrs%3D&md5=f5949f5e9bcdd5ad8ea429daf26cabadCAS |