Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Sensitive Catalytic Wave Formed by Electrochemical Reduction of Morin in the Presence of an Oxidant KIO3

Sikun Cheng A E , Yanhua Dong B , Yayan Wu B , Junfeng Song C E and Chuan Zhao D E
+ Author Affiliations
- Author Affiliations

A Department of Medicinal Chemistry, School of Pharmacy, the Fourth Military Medical University, Xi’an, 710032, China.

B The Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049, China.

C Institute of Analytical Science, Northwest University, Xi’an, 710069, China.

D School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

E Corresponding authors. Email: skcheng@fmmu.edu.cn; songjunf@nwu.edu.cn; chuan.zhao@unsw.edu.au

Australian Journal of Chemistry 67(4) 620-625 https://doi.org/10.1071/CH13484
Submitted: 12 September 2013  Accepted: 28 October 2013   Published: 21 November 2013

Abstract

The investigation of the electrogenerated free radical of morin reacting with an oxidant is helpful in understanding its antioxidant pharmacology. In phosphate buffer (pH 5.6 ± 0.1), the reduction of morin proceeds with a one-electron transfer of the C=O double bond into a free radical intermediate, which then delivers the final primary alcohol via a one-electron reduction. When an oxidant KIO3 is present, the free radical intermediate of morin is oxidized to regenerate the original ‘C=O’ bond. Further reduction processes are effectively inhibited, resulting in a sensitive catalytic peak, with the peak current enhanced 70 times.


References

[1]  R. Zhang, K. A. Kang, M. J. Piao, Y. H. Maeng, K. H. Lee, W. Y. Chang, H. J. You, J. S. Kim, S. S. Kang, J. W. Hyun, Chem.-Biol. Interact. 2009, 177, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2gtr3K&md5=e0cd5e2af7eb2914e4c0fadaaa0cd9c7CAS |

[2]  V. Sreedharan, K. K. Venkatachalam, N. Namasivayam, Invest. New Drugs 2009, 27, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejt77K&md5=7eb952cd6cc73b1ec66ae9c87848daa2CAS |

[3]  J. M. D. Marković, Z. S. Marković, I. A. Pašti, T. P. Brdarić, A. P. Bijelić, M. Mojović, Dalton Trans. 2012, 41, 7295.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  N. Arshad, N. K. Janjua, A. Y. Khan, J. H. Zaidi, L. H. Skibsted, Monatsh. Chem. 2012, 143, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChtLs%3D&md5=e9d6f5060afc7933fa91490bcce5af9bCAS |

[5]  N. E. Zoulis, C. E. Efstathiou, Anal. Chim. Acta 1996, 320, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlWiu7w%3D&md5=e4355260ef75d0a336cfcc1062428a2dCAS |

[6]  T. M. Florence, J. Electroanal. Chem. 1979, 97, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1Wkt74%3D&md5=5c9987bce8a6168e282b1d8ab5bbf105CAS |

[7]  P. Xiao, Q. Zhou, F. Xiao, F. Q. Zhao, B. Z. Zeng, Int. J. Electrochem. Sci. 2006, 1, 228.
         | 1:CAS:528:DC%2BD28XpsVOht7o%3D&md5=8826954f98974a7fab017a6fd70a876aCAS |

[8]  N. Q. Li, Y. X. Xu, Acta Phys. Chim. Sin. 1993, 9, 175.
         | 1:CAS:528:DyaK3sXktlKhtbo%3D&md5=b79e2b9cb5b71cd10bc3499118d32f49CAS |

[9]  D. Girish, R. Ravi, Z. Kamala, J. Indian Chem. Soc. 1983, 60, 835.

[10]  M. T. Xu, H. L. Ma, J. F. Song, J. Pharm. Biomed. Anal. 2004, 35, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFSmt7o%3D&md5=1af3576c3faa24435d3e479ef0092cb7CAS |

[11]  M. T. Xu, L. F. Chen, J. F. Song, Anal. Biochem. 2004, 329, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsl2hu78%3D&md5=90860eb9f5fd4d96597682874fdde926CAS |

[12]  W. Guo, H. Lin, L. M. Liu, J. F. Song, J. Pharm. Biomed. Anal. 2004, 34, 1137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWmtL4%3D&md5=9b9bd44b587fd53ce1894a48ce103f78CAS |

[13]  E. F. Orlemann, I. M. Kolthoff, J. Am. Chem. Soc. 1942, 64, 1044.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH38XivVyiuw%3D%3D&md5=9af65e52b24873784c1dbdc3716c606bCAS |

[14]  Z. Yang, S. M. Zhu, Chinese J. Appl. Chem. 1999, 27, 1431.
         | 1:CAS:528:DC%2BD3cXhtlekuw%3D%3D&md5=26cfa34e6a548c752813b56a9643694bCAS |

[15]     (a) J. Wang, Analytical Electrochemistry, 3rd edn 2006, Ch. 3, p. 179 (John Wiley & Sons: Hoboken, NJ).
         (b) J. Wang, Analytical Electrochemistry, 3rd edn 2006, Ch. 2, p. 34 (John Wiley & Sons: New Jersey).

[16]  Z. X. Zhang, Y. F. Tu, Chem J. Chinese Univ. 1985, 6, 403.
         | 1:CAS:528:DyaL2MXlvVylt7Y%3D&md5=1ad54a89ab6c1968b2e2c98bcf20db43CAS |

[17]  K. S. R. Jagasia, B. C. Haldar, J. Indian Chem. Soc. 1963, 40, 287.

[18]  K. R. Sharma, R. M. Noyes, J. Am. Chem. Soc. 1976, 98, 4345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltlWhsrc%3D&md5=b94e83f4b99a816421eb47d45bab9605CAS |

[19]  D. O. Cooke, J. Chem. Soc., Chem. Commun. 1984, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltFOnurk%3D&md5=2587c0dbd80ff05937dc22f33b66e8c2CAS |