Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structure, NMR Spectroscopy, and Electrochemistry of the Sterically Congested Triarylarsine Dipp3As: EPR Characterization of its Radical Cation

Mona Taghavikish A , Brock L. Price A , Tracey L. Roemmele A and René T. Boeré A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K3M4, Canada.

B Corresponding author. Email: boere@uleth.ca

Australian Journal of Chemistry 66(10) 1226-1234 https://doi.org/10.1071/CH13244
Submitted: 7 May 2013  Accepted: 11 June 2013   Published: 2 August 2013

Abstract

The synthesis, NMR spectroscopy, single-crystal X-ray structure, and solution electrochemistry of the new compound [2,6-{CH(CH3)}2C6H3]3 As, abbreviated as Dipp3As, is reported. The molecule, prepared by reaction of AsCl3 with a pre-formed aryl copper reagent, Dipp4Cu4, crystallizes in the hexagonal space group R3 as a racemic twin. The sum of angles around As, ∑∠{CAsC}, is 329.13(3)° in the X-ray structure and 329.17° from an R-B3LYP/6-31G(d,p) hybrid density functional theory calculation. The aromatic rings are quite distorted with both the ipso carbon and especially the As atom significantly out of plane by 0.503(3) Å. The ambient temperature NMR spectrum fits for C3 symmetry implying that inversion is slow on the NMR timescale. Cyclic voltammetry on a glassy carbon electrode in CH2Cl2 with 0.4 M [nBu4N][PF6] over scan rates of 0.05–0.8 V s–1 and temperatures of 22 ± 2°C produced one quasi-reversible process with Em1 = +0.43 V at a scan rate of 0.20 V s–1 and a second irreversible process with a peak potential of +1.45 V (v. Fc+/0). The diffusion coefficient has been measured as 3.3 ± 0.1 × 10–6 cm2 s–1 in CH2Cl2 solution containing 0.4 M [nBu4N][PF6]. Chemical oxidation with AgPF6 in CH2Cl2 in degassed solutions in sealed vessels allowed for recording of characteristic EPR spectra; at 293 K, a (75As) = 26.1 mT and g = 2.021. In frozen solution, an almost isotropic spectrum is obtained (g = 2.000 mT and g = 2.003 mT) and the hyperfine splitting constants are a = 47.9 and a = 19.0 mT, leading to an estimate for the structure being slightly pyramidal with ∑∠{CAsC} ≈ 351°.


References

[1]  R. T. Boeré, A. M. Bond, S. Cronin, N. W. Duffy, P. Hazendonk, J. D. Masuda, K. Pollard, T. L. Roemmele, P. Tran, Y. Zhang, New J. Chem. 2008, 32, 214.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Sasaki, K. Sutoh, F. Murakami, M. Yoshifuji, J. Am. Chem. Soc. 2002, 124, 14830.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSns7g%3D&md5=68d7a6e456b433f85535e5c436d1229aCAS | 12475308PubMed |

[3]  S. Sasaki, F. Murakami, M. Yoshifuji, Organometallics 2006, 25, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ajsr7F&md5=28108bf0f872c124bd9b6481bda885fbCAS |

[4]  S. Sasaki, M. Yoshifuji, Curr. Org. Chem. 2007, 11, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlygtbo%3D&md5=4bae4492986dab5f8119b4c04056370cCAS |

[5]  S. Sasaki, R. Chowdhury, M. Yoshifuji, Tetrahedron Lett. 2004, 45, 9193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Oltb4%3D&md5=fca5b708b3cb0807ac2bcca6316e61c1CAS |

[6]  F. Chalier, Y. Berchadsky, J. Finet, G. Gronchi, S. Marque, P. Tordo, J. Phys. Chem. 1996, 100, 4323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVKntr0%3D&md5=ce36e3346ceeb7d12b3a5a6b4f9ecd4bCAS |

[7]  C. Palau, Y. Berchadsky, F. Chalier, J. Finet, G. Gronchi, P. Tordo, J. Phys. Chem. 1995, 99, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis12hsL0%3D&md5=7a3a3b4e67bed3501e81f8430aa9fcf6CAS |

[8]  M. Culcasi, Y. Berchadsky, G. Gronchi, P. Tordo, J. Org. Chem. 1991, 56, 3537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlKmsr8%3D&md5=6bba87da44f1a5293ffaa06180137180CAS |

[9]  X. Pan, X. Chen, T. Li, Y. Li, X. Wang, J. Am. Chem. Soc. 2013, 135, 3414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVyhtrs%3D&md5=c085ca17f2bda5f4fc61d9e6ff02d183CAS | 23425226PubMed |

[10]  R. T. Boeré, Electron Paramag. Reson. 2013, 23, 22.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  D. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2jur0%3D&md5=465ee78a6007c74d687085938acd1c3cCAS | 21743834PubMed |

[12]  J. Konu, T. Chivers, in Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds (Ed. R. G. Hicks) 2010, pp. 381–406 (John Wiley: Chichester).

[13]  A. Armstrong, T. Chivers, R. T. Boeré, ACS Symp. Ser. 2006, 917, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFKlsrw%3D&md5=5c1b485c2c1cf8fe21dc9e262d9b03f8CAS |

[14]  S. Marque, P. Tordo, Top. Curr. Chem. 2005, 250, 43.
         | 1:CAS:528:DC%2BD2MXkslyntrY%3D&md5=cfb43ff9fcd3a0d671e12fe1f8a8d41aCAS |

[15]  P. P. Power, Chem. Rev. 2003, 103, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGkt7Y%3D&md5=2ace77188a6479e3d7f2ac3302bf3575CAS | 12630853PubMed |

[16]  M. Geoffroy, Recent Res. Dev. Phys. Chem. 1998, 2, 311.
         | 1:CAS:528:DyaK1MXht1Smu7w%3D&md5=2311e05e592c015fc8ae6f86d5a59776CAS |

[17]  R. T. Boeré, Y. Zhang, J. Organomet. Chem. 2005, 690, 2651.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  F. J. Brady, C. J. Cardin, D. J. Cardin, D. J. Wilcock, Inorg. Chim. Acta 2000, 298, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtF2jurg%3D&md5=62e18b020b0ee0111c7e4e4ceee41962CAS |

[19]  B. Twamley, C.-S. Hwang, N. J. Hardman, P. P. Power, J. Organomet. Chem. 2000, 609, 152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFals7c%3D&md5=57faf7d281e9c22ede098f3c7bc3ef65CAS |

[20]  F. H. Allen, Acta Crystallogr. 2002, B58, 380.
         | 1:CAS:528:DC%2BD38XktVOqu74%3D&md5=e14b116c4448357e4d1a329b5a301356CAS |

[21]  P. Jutzi, S. Pilotek, B. Neumann, H.-G. Stammler, J. Organomet. Chem. 1998, 552, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFSnsbg%3D&md5=f3349875ff71a407679f21108ff20d67CAS |

[22]  H. Schmidbaur, P. Nusstein, G. Muller, Z. Naturforsch. B: Chem. Sci. 1984, 39, 1456.

[23]  A. N. Sobolev, V. K. Belsky, N. Yu. Chernikova, F. Yu. Akhmadulina, J. Organomet. Chem. 1983, 244, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtFOms70%3D&md5=f3434fa871c89708bcdccffd77b50fb4CAS |

[24]  A. S. King, G. Ferguson, J. F. Britten, J. F. Valliant, Inorg. Chem. 2004, 43, 3507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt12kurg%3D&md5=c42bea90346b7e2e94806fd90a01f8e0CAS | 15154815PubMed |

[25]  O. bin Shawkataly, I. A. Khan, C. S. Yeap, H.-K. Fun, Acta Crystallogr. 2009, E65, o2772.

[26]  S. C. Chmely, T. P. Hanusa, A. L. Rheingold, Organometallics 2010, 29, 5551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgsbw%3D&md5=d9717522ec9f8b96b4994c812a9d55cdCAS |

[27]  H. Lang, L. Zsolnai, Z. Naturforsch. B: Chem. Sci. 1990, 45, 1529.
         | 1:CAS:528:DyaK3MXhtVagt74%3D&md5=95c9ce0f17423f18fc20be2e84504b95CAS |

[28]  S. Kamepalli, C. J. Carmalt, R. D. Culp, A. H. Cowley, R. A. Jones, N. C. Norman, Inorg. Chem. 1996, 35, 6179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtF2ju7g%3D&md5=83ca71fa1068ddf98a8c9014accd4429CAS |

[29]  A. N. Sobolev, I. P. Romm, N. Yu. Chernikova, V. K. Belsky, E. N. Guryanova, J. Organomet. Chem. 1981, 219, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVeisb0%3D&md5=e477e5a7b54fd5c0abeeccb6d353231aCAS |

[30]  J. D. Andose, A. Rauk, K. Mislow, J. Am. Chem. Soc. 1974, 96, 6904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlslKntrg%3D&md5=55a30b8716353f4332f1e9b1bc403f9aCAS |

[31]  R. S. Stojanovic, A. M. Bond, Anal. Chem. 1993, 65, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1Snsrw%3D&md5=0a811f11806a0ba7dc7036b1c33c2e83CAS |

[32]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2001 (John Wiley & Sons: New York, NY).

[33]  J. Nath, A. P. Dixit, J. Chem. Eng. Data 1984, 29, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXksVersb0%3D&md5=f6422dab1a91137e29ae8fece4e1df69CAS |

[34]  A. S. Romakhin, E. V. Nikitin, O. V. Parakin, Y. A. Ignat’ev, B. S. Mironov, Y. M. Kargin, J. Gen. Chem. U.S.S.R. 1987, 2298.

[35]  N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVGhu7Y%3D&md5=dfab44ceda8d8b5e922a3056549fecfdCAS | 11848774PubMed |

[36]  D. M. Murphy, in Metal Oxide Catalysis (Eds S. D. Jackson, J. S. J. Hargreaves) 2009, Vol. 1, pp. 1–50 (Wiley-VCH: Weinheim).

[37]  J. A. Weil, J. R. Bolton, J. E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn 1994 (John Wiley & Sons: New York, NY).

[38]  G. W. Eastland, M. C. R. Symons, J. Chem. Soc. Perkin 1977, II, 833.

[39]  E. Furimsky, J. A. Howard, J. R. Morton, J. Am. Chem. Soc. 1972, 94, 5932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVSnsro%3D&md5=c872ebe43a346c2341cb64570ad25f33CAS |

[40]  E. Furimsky, J. A. Howard, J. R. Morton, J. Am. Chem. Soc. 1973, 95, 6574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXivVCq&md5=f84f77d0f74bb3b5fe1d8984ee6f3674CAS |

[41]  A. V. Il’yasov, Y. M. Kargin, E. V. Nikitin, A. A. Vafina, G. V. Romanov, O. V. Parakin, A. A. Kazakova, A. N. Pudovik, Phosphorus Sulfur 1980, 8, 259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlsFOrs70%3D&md5=558b9e74b9faba17d7075c05d9718ba3CAS |

[42]  J. R. Morton, K. F. Preston, J. Magn. Reson. 1978, 30, 577.
         | 1:CAS:528:DyaE1cXlt1Sgtrk%3D&md5=09fbf2d7b3506b97b94084ddd5cb86ccCAS |

[43]  C. A. Coulson, in Volume Commémoratif Victor Henri, Contributions à l’Etude de la Structure Moléculaire 1948, pp. 12–32 (Desoer: Liège).

[44]  R. R. Schrock, M. Wesolek, A. H. Liu, K. C. Wallace, J. C. Dewan, Inorg. Chem. 1988, 27, 2050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitlSqsbs%3D&md5=117da104eaec706d283a2926c4de361cCAS |

[45]  APEX2, SAINT-Plus and SADABS 2008 (Bruker AXS Inc.: Madison, WI).

[46]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.

[47]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=8024af10af850efe21022eb9ca4f08c3CAS |