Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Alkaline Earth Metal Organoamide Complexes Displaying Close Ae–F(C) (Ae = Ca, Mg) Interactions

Glen B. Deacon A C , Peter C. Junk B C and Rory P. Kelly A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, PO Box 23, Melbourne, Vic. 3800, Australia.

B School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Qld 4811, Australia.

C Corresponding authors. Email: glen.deacon@monash.edu; peter.junk@jcu.edu.au

Australian Journal of Chemistry 66(10) 1288-1296 https://doi.org/10.1071/CH13228
Submitted: 1 May 2013  Accepted: 9 July 2013   Published: 1 August 2013

Abstract

Protolysis of [Ca{N(SiMe3)2(thf)2] (thf = tetrahydrofuran) with the N,N-dialkyl-N′-2,3,5,6-tetrafluorophenylethane-1,2-diamines, p-HC6F4NH(CH2)2NR2 (LRH; R = Me or Et), yields [Ca(p-HC6F4N(CH2)2NR2)2(thf)2], whilst protolysis of di-n-butylmagnesium by the same amines yields [Mg(p-HC6F4N(CH2)2NR2)2] complexes. X-Ray crystal structures show that the calcium derivatives contain eight-coordinate calcium atoms, with tridentate (N,N′,o-F) coordination of the organoamide ligands and cisoid thf donors. It is noteworthy that the Ca–F(C) bond lengths are shorter than the Ca–NR2 bond lengths. By contrast, magnesium forms centrosymmetric, six-coordinate, homoleptic complexes, in which the Mg–NR2 bond lengths are shorter than the Mg–F(C) bond lengths. 19F{1H} NMR spectra of the R = Me complexes support retention of Ae–F(C) linkages in solution at low temperatures. Heating the complexes for a prolonged period in C6D6 at 80°C showed no evidence of C–F activation reactions.


References

[1]  K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
         | Crossref | GoogleScholarGoogle Scholar | 17901324PubMed |

[2]  K. P. Shine, W. T. Sturges, Science 2007, 315, 1804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFygurg%3D&md5=c001a26f9de678a88b937d9b34097224CAS | 17395819PubMed |

[3]  (a) J. L. Kiplinger, T. G. Richmond, C. E. Osterberg, Chem. Rev. 1994, 94, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFOkt70%3D&md5=5d6611807c825ada26caee8d6b84ec6aCAS |
      (b) H. Amii, K. Uneyama, Chem. Rev. 2009, 109, 2119.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Uneyama, H. Amii, J. Fluor. Chem. 2002, 114, 127.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Braun, R. N. Perutz, Chem. Commun. 2002, 2749.
         | Crossref | GoogleScholarGoogle Scholar |
         (e) R. N. Perutz, T. Braun, in Comprehensive Organometallic Chemistry III (Eds R. H. Crabtree, D. M. P. Mingos) 2007, pp. 725–758 (Elsevier: Oxford).
      (f) T. Braun, F. Wehmeier, Eur. J. Inorg. Chem. 2011, 613.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) U. Mazurek, H. Schwarz, Chem. Commun. 2003, 1321.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) A. D. Sun, J. A. Love, Dalton Trans. 2010, 39, 10362.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) E. Clot, O. Eisenstein, N. Jasim, S. A. Macgregor, J. E. McGrady, R. N. Perutz, Acc. Chem. Res. 2011, 44, 333.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) A. Nova, R. Mas-Ballesté, A. Lledós, Organometallics 2012, 31, 1245.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) M. Klahn, U. Rosenthal, Organometallics 2012, 31, 1235.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  N. N. Vorozhtsov, V. A. Barkhasch, N. G. Ivanova, A. K. Petrov, Tetrahedron Lett. 1964, 5, 3575.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  E. C. Ashby, S. H. Yu, R. G. Beach, J. Am. Chem. Soc. 1970, 92, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXmslSisQ%3D%3D&md5=d60b73a34fffc9feee81a2da0e96fe00CAS |

[6]  J. A. Rood, S. E. Hinman, B. C. Noll, K. W. Henderson, Eur. J. Inorg. Chem. 2008, 3935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqurjM&md5=ff78b26a616c4faa03df1f9f6441d98fCAS |

[7]  K. Matsubara, T. Ishibashi, Y. Koga, Org. Lett. 2009, 11, 1765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyqsrY%3D&md5=bd1392c4dbf09a4f6dff1378653920f4CAS | 19281250PubMed |

[8]  A. G. M. Barrett, M. R. Crimmin, M. S. Hill, P. B. Hitchcock, P. A. Procopiou, Angew. Chem. Int. Ed. 2007, 46, 6339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVSrt7k%3D&md5=f73dbc7c0b774f9fb35a48485e28ce01CAS |

[9]  G. B. Deacon, P. C. Junk, G. J. Moxey, Dalton Trans. 2010, 39, 5620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntV2jurc%3D&md5=cf2387c935bee8ca3703696c6ad24507CAS | 20485729PubMed |

[10]  G. B. Deacon, G. D. Fallon, C. M. Forsyth, S. C. Harris, P. C. Junk, B. W. Skelton, A. H. White, Dalton Trans. 2006, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFShsQ%3D%3D&md5=f85514be4d9787ecce33b64166919e1cCAS | 16437175PubMed |

[11]  (a) H. Plenio, ChemBioChem 2004, 5, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFeqtLc%3D&md5=9211654c5b71d7eb69696b457256fc6eCAS | 15122637PubMed |
      (b) H. Plenio, Chem. Rev. 1997, 97, 3363.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) G. B. Deacon, C. M. Forsyth, P. C. Junk, J. Wang, Chem. – Eur. J. 2009, 15, 3082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1Clurw%3D&md5=23338a5e0c68e7cf05c1cebe57f99e03CAS | 19222064PubMed |
      (b) G. B. Deacon, C. M. Forsyth, P. C. Junk, R. P. Kelly, A. Urbatsch, J. Wang, Dalton Trans. 2012, 41, 8624.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) F. Jaroschik, A. Momin, F. Nief, X.-F. Le Goff, G. B. Deacon, P. C. Junk, Angew. Chem. Int. Ed. 2009, 48, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslamt7g%3D&md5=4e907365dd41eb08b97b596526f62b8aCAS |
      (b) M. N. Bochkarev, I. L. Fedushkin, A. A. Fagin, T. V. Petrovskaya, J. W. Ziller, R. N. R. Broomhall-Dillard, W. J. Evans, Angew. Chem. Int. Ed. 1997, 36, 133.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. B. Hitchcock, M. F. Lappert, L. Maron, A. V. Protchenko, Angew. Chem. Int. Ed. 2008, 47, 1488.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. R. MacDonald, J. W. Ziller, W. J. Evans, J. Am. Chem. Soc. 2011, 133, 15914.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. R. MacDonald, J. E. Bates, M. E. Fieser, J. W. Ziller, F. Furche, W. J. Evans, J. Am. Chem. Soc. 2012, 134, 8420.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. D. Shannon, Acta Crystallogr. A 1976, 32, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  D. C. Bradley, M. Hasan, M. B. Hursthouse, M. Motevalli, O. F. Z. Khan, R. G. Pritchard, J. O. Williams, J. Chem. Soc. Chem. Commun. 1992, 575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xis1Oqs7w%3D&md5=38615714c98f2ba6aadde90cae19f761CAS |

[16]  K. Yan, B. M. Upton, A. Ellern, A. D. Sadow, J. Am. Chem. Soc. 2009, 131, 15110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sqt7nK&md5=78931ed4e2be25d8c1e4edf15c88ff36CAS | 19795868PubMed |

[17]  A. G. M. Barrett, M. R. Crimmin, M. S. Hill, P. B. Hitchcock, S. L. Lomas, M. F. Mahon, P. A. Procopiou, Dalton Trans. 2010, 39, 7393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlyntLo%3D&md5=7dd6c96b4c28e9382628d3c9c66cc202CAS |

[18]  Y. Sarazin, B. Liu, T. Roisnel, L. Maron, J.-F. Carpentier, J. Am. Chem. Soc. 2011, 133, 9069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Krsbo%3D&md5=3a6b1def15daf3c09d2b2e406c7a9f51CAS | 21545119PubMed |

[19]  L. G. Alves, A. M. Martins, M. T. Duarte, J. Mol. Struct. 2012, 1026, 168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVykur%2FM&md5=7f2ae00d39771d26b3088452f8171cf6CAS |

[20]  I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, R. Taylor, Acta Crystallogr. B 2002, 58, 389.
         | Crossref | GoogleScholarGoogle Scholar | 12037360PubMed |

[21]  F. Allen, Acta Crystallogr. B 2002, 58, 380.
         | Crossref | GoogleScholarGoogle Scholar | 12037359PubMed |

[22]  A. F. Wells, Structural Inorganic Chemistry, 5th edn 1984, p. 1288 (Clarendon Press: Oxford).

[23]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=b78ccfb7bc6298500d4f04a6db47751aCAS |

[24]  C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Gmtb0%3D&md5=8024af10af850efe21022eb9ca4f08c3CAS |

[25]  A. Higelin, I. Krossing, Private communication to the Cambridge Structural Database, deposition number CCDC 912659 2012.

[26]  (a) M. L. Hays, T. P. Hanusa, T. A. Nile, J. Organomet. Chem. 1996, 514, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlSqtLc%3D&md5=cf9ca188dffb826cd80147355379709cCAS |
      (b) Y. Sarazin, D. Roşca, V. Poirier, T. Roisnel, A. Silvestru, L. Maron, J.-F. Carpentier, Organometallics 2010, 29, 6569.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Gillett-Kunnath, W. Teng, W. Vargas, K. Ruhlandt-Senge, Inorg. Chem. 2005, 44, 4862.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Y. Kim, Y. Yang, J. R. Abelson, G. S. Girolami, Inorg. Chem. 2007, 46, 9060.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. S. Hutchings, P. C. Junk, W. C. Patalinghug, C. L. Raston, A. H. White, J. Chem. Soc. Chem. Commun. 1989, 973.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. M. Engelhardt, P. C. Junk, C. L. Raston, A. H. White, J. Chem. Soc. Chem. Commun. 1988, 1500.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) M. Westerhausen, S. Schneiderbauer, H. Piotrowski, M. Suter, H. Nöth, J. Organomet. Chem. 2002, 643–644, 189.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) W. D. Buchanan, M. A. Guino-o, K. Ruhlandt-Senge, Inorg. Chem. 2010, 49, 7144.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Torvisco, K. Decker, F. Uhlig, K. Ruhlandt-Senge, Inorg. Chem. 2009, 48, 11459.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. C. Sockwell, T. P. Hanusa, J. C. Huffman, J. Am. Chem. Soc. 1992, 114, 3393.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. J. McCormick, S. C. Sockwell, C. E. H. Davies, T. P. Hanusa, J. C. Huffman, Organometallics 1989, 8, 2044.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  J. M. Harrowfield, G. A. Lawrence, A. M. Sargeson, J. Chem. Educ. 1985, 62, 804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCitbc%3D&md5=fe31d3a399d8809e096a23928800cd3bCAS |

[29]  (a) X. Xu, Y. Chen, G. Zou, Z. Ma, G. Li, J. Organomet. Chem. 2010, 695, 1155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVSgs7g%3D&md5=b5f7dc694a7adb0d8ca22f12786054b7CAS |
      (b) M.-W. Hsiao, C.-C. Lin, Dalton Trans. 2013, 42, 2041.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  C. J. Hawkins, Absolute Configuration of Metal Complexes 1971, pp. 278–291 (John Wiley and Sons, Inc.: New York, NY). This reference deals with the 1H NMR spectra of diamine complexes, whereas in the current study the ligands are diaminate(1–) species.

[31]  W. Vargas, K. Ruhlandt-Senge, Eur. J. Inorg. Chem. 2003, 3472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSrsr0%3D&md5=210953eb799c23688b0a46567661190eCAS |

[32]  S.-M. Ho, C.-S. Hsiao, A. Datta, C.-H. Hung, L.-C. Chang, T.-Y. Lee, J.-H. Huang, Inorg. Chem. 2009, 48, 8004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Sru78%3D&md5=fe1cc8584d47ae608483e8593b13902aCAS | 19606842PubMed |

[33]  S. A. Mungur, S. T. Liddle, C. Wilson, M. J. Sarsfield, P. L. Arnold, Chem. Commun. 2004, 2738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVekt7rM&md5=627500f11fb91ec19359c2f4349a8763CAS |

[34]  K. W. Henderson, R. E. Mulvey, W. Clegg, P. A. O’Neil, J. Organomet. Chem. 1992, 439, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltl2huro%3D&md5=5ee9cf9ed9c03cfcfcc9328c99feacb9CAS |

[35]  L.-F. Hsueh, N.-T. Chuang, C.-Y. Lee, A. Datta, J.-H. Huang, T.-Y. Lee, Eur. J. Inorg. Chem. 2011, 5530.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gtrnM&md5=2623f46719ae38bf428e987a3ad2bb5fCAS |

[36]  M. Vestergren, J. Eriksson, M. Håkansson, J. Organomet. Chem. 2003, 681, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVKrt7s%3D&md5=975908745bced4c7ae151cf2999c5414CAS |

[37]  M. A. Guino-o, E. Baker, K. Ruhlandt-Senge, J. Coord. Chem. 2008, 61, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaqtbrP&md5=579b24a1c0458feefa6a64d99a35c4bcCAS |

[38]  A.-M. Neculai, C. C. Cummins, D. Neculai, H. W. Roesky, G. Bunkòczi, B. Walfort, D. Stalke, Inorg. Chem. 2003, 42, 8803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptl2mtbg%3D&md5=2add2ee8bc1a1f8c84788c5bd21a7dc0CAS | 14686860PubMed |

[39]  S. Nembenna, S. Singh, S. S. Sen, H. W. Roesky, H. Ott, D. Stalke, Z. Anorg. Allg. Chem. 2011, 637, 201.
         | 1:CAS:528:DC%2BC3MXhvVCrsbc%3D&md5=64eeec4e552b529162709513cd577725CAS |

[40]  J. S. Wixey, B. D. Ward, Chem. Commun. 2011, 47, 5449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1CktL4%3D&md5=28b4eb8203ccb52eccc88c9b6efd6380CAS |

[41]  D. P. Buxton, G. B. Deacon, A. M. James, S. J. Knowles, T. L. Williams, Polyhedron 1989, 8, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXks12qu74%3D&md5=fdfe67a209d580671992cb29d8de5370CAS |

[42]  G. M. Sheldrick, SADABS: Program for Scaling and Absorption Correction of Area Detector Data 1997 (Universität Göttingen: Göttingen).

[43]  T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=1a9e6fbd2f7f2f1a7f4051d4bc8011faCAS | 12409628PubMed |

[44]  W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=dbf58e9ba5211250a976faa6d993cb68CAS |

[45]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS | 18156677PubMed |

[46]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=83d3d27f6ab0b644a196d2fa998350feCAS |