Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterisation of [(en)2Co]3+ Complexes Coordinated by Substituted Thiourea Ligands

Lee Roecker A B C D F , Mohammed Aiyegbo A , Aladdin Al-Haddad A , Emily Fletcher A , Ravi Kc A , Jason Hurst A , Timothy Lane B , Ryan Larsen C , Nicholas Noinaj A , Say Lee Teh A , Samuel K. Wade A and Sean Parkin E F
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Berea College, Berea, KY 40404, USA.

B Department of Chemistry, Gettysburg College, Gettysburg, PA 17325, USA.

C Department of Chemistry, Bates College, Lewiston, ME 04240, USA.

D Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA.

E Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.

F Corresponding authors. Email: lroecker@nmu.edu; s.parkin@uky.edu (crystallographic work)

Australian Journal of Chemistry 66(8) 944-951 https://doi.org/10.1071/CH13150
Submitted: 1 April 2013  Accepted: 29 April 2013   Published: 27 May 2013

Abstract

Substituted thiourea ligands bind in a bidentate manner forming a four-membered ring through the sulfur atom and a deprotonated thiourea nitrogen atom when reacted with [(en)2Co(OSO2CF3)2]+ in tetramethylene sulfone. Reaction of unsymmetrical ligands results in the formation of coordination isomers, some of which can be separated by column chromatography using Sephadex SPC-25. Coordination isomers are easily distinguishable based on visible and 1H NMR spectroscopy . Twelve para-substituted and one meta-substituted ligands were studied: N,N′-dibenzylthiourea (1a); N-(R)phenyl-N′-benzylthiourea {R = H (2a), NO2 (2b), CH3 (2c)}; N-(R)phenyl-N′-(R′)phenylthiourea {R, R′: H, H (3a), H, CH3 (3b), OCH3, NO2 (3c), CH3, NO2 (3d)}; N-methyl-N′-(R)phenylthiourea {R = H (4a), CH3 (4b), OCH3 (4c), NO2 (4d), 3-CH3 (4e)}. The solid state structure (X-ray) of one isomer of Co-4a as its perchlorate salt confirms the coordination mode suggested by 1H NMR spectroscopy and shows that the Co–N bond trans to the coordinated thiourea sulfur induces a structural trans effect of 0.019 Å.


References

[1]  K. R. Koch, Coord. Chem. Rev. 2001, 216–217, 473.

[2]  L. C. Eiter, N. W. Hall, C. S. Day, G. Saluta, G. L. Kucera, U. Bierbach, J. Med. Chem. 2009, 52, 6519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artLvI&md5=a5a436e80716aa64574c66bea278f9c8CAS | 19803526PubMed |

[3]  U. Bierbach, T. W. Hambley, N. Farrell, Inorg. Chem. 1998, 37, 708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Kitw%3D%3D&md5=7c32e44095bbe5ad391d6aa141bbd4d3CAS |

[4]  R. Guddneppanavar, G. Saluta, G. L. Kucera, U. Bierbach, J. Med. Chem. 2006, 49, 3204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFeitbw%3D&md5=72f0fcf79f0ac6681e08eb9eba9ce417CAS | 16722638PubMed |

[5]  E. T. Martins, H. Baruah, J. Kramarcyk, G. Saluta, C. S. Day, G. L. Kucera, U. Bierbach, J. Med. Chem. 2001, 44, 4492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFyktLY%3D&md5=1a678c95b93b50fdd0dbf95972b0d3beCAS | 11728195PubMed |

[6]  C. G. Barry, E. C. Turney, C. S. Day, G. Saluta, G. L. Kucera, U. Bierbach, Inorg. Chem. 2002, 41, 7159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFygtLc%3D&md5=b696db905fa684b95fb38517e7813142CAS | 12495358PubMed |

[7]  R. del Campo, J. J. Criado, R. Gheorghe, F. J. González, M. R. Hremosa, F. Sanz, J. L. Manzano, E. Monte, E. Rodríguez-Fernández, J. Inorg. Biochem. 2004, 98, 1307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFykt7g%3D&md5=563774c4aaf89b6d9ef202b6ef02d713CAS | 15271506PubMed |

[8]  W. Zhou, W. Yang, L. Xie, X. Cheng, J. Inorg. Biochem. 2005, 99, 1314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Slsbg%3D&md5=7d6898b5ec499bd6728c889588c2093cCAS |

[9]  H. Alizaman, M. R. Ganjali, P. Norouzi, A. Tajorodi, Y. Hanifehpour, J. Chilean Chem. Soc. 2007, 52, 1332.

[10]  N. E. Dixon, D. P. Fairlie, W. G. Jackson, A. M. Sargeson, Inorg. Chem. 1982, 21, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVGjtQ%3D%3D&md5=dc4d1be7495a16fa82721cf68efaea31CAS |

[11]  N. J. Curtis, N. E. Dixon, A. M. Sargeson, J. Am. Chem. Soc. 1983, 105, 5347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks1eiur8%3D&md5=21217a7d4b290198b04abd35b8a82927CAS |

[12]  D. P. Fairlie, W. G. Jackson, Inorg. Chim. Acta 1988, 150, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtFKrtbk%3D&md5=c32d262ac50296d108b3af4c4be62a3bCAS |

[13]  D. P. Fairlie, W. A. Wickramasinghe, K. A. Byriel, H. Taube, Inorg. Chem. 1997, 36, 2242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFSjtLc%3D&md5=ba819a31a0bd98db5ef6cbe82c6f1dfaCAS | 11669854PubMed |

[14]  P. Maslak, J. J. Sczepanski, M. Parvez, J. Am. Chem. Soc. 1991, 113, 1062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnsVWltw%3D%3D&md5=b491c6fc6de1e5012dfd232a766598beCAS |

[15]  R. L. Blakeley, A. Treston, R. K. Andrews, B. J. Zerner, J. Am. Chem. Soc. 1982, 104, 612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvVaisQ%3D%3D&md5=41e5e1a641e6c20cb40c2290a14fbd1dCAS |

[16]  L. Roecker, J. Akande, L. N. Elam, I. Gagua, B. W. Helton, M. C. Prewitt, A. M. Sargeson, J. H. Swango, A. C. Willis, T. Xin, J. Xu, Inorg. Chem. 1999, 38, 1269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVSitLk%3D&md5=5ddd494380bd793f6ec10b9b773cd8e3CAS | 11670912PubMed |

[17]  L. Roecker, M. H. Dickman, D. L. Nosco, R. J. Doedens, E. Deutsch, Inorg. Chem. 1983, 22, 2022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVKqtb4%3D&md5=0e1e8a1dd5c1597f21d522469376d017CAS |

[18]  L. Roecker, E. Deutsch, Inorg. Chem. 1985, 24, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmvVSmsw%3D%3D&md5=bfb360079ac05bee5301c3155336510bCAS |

[19]  A. Ellis, A. Fultz, R. Hicks, T. Morgan, L. Parsons, M. J. Saderholm, L. A. Smith, M. Staub, J. K. Starnes, L. J. Sun, L. Roecker, Aust. J. Chem. 1992, 45, 2049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsF2rsro%3D&md5=df502b0e8b3554106fea2a4bf0f793d3CAS |

[20]  N. E. Dixon, W. G. Jackson, M. J. Lancaster, G. A. Lawrence, A. M. Sargeson, Inorg. Chem. 1981, 20, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXnsF2jtQ%3D%3D&md5=7c0cf3e52011007c4eb5e487eb77bc15CAS |

[21]  N. E. Dixon, G. A. Lawrance, A. M. Sargeson, Inorg. Chem. 1984, 23, 2940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlt1Wrt7s%3D&md5=c57e5ddf4e1fceefe3cd06dfec65e079CAS |

[22]  G. A. Lawrance, Chem. Rev. 1986, 86, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsVyqtr0%3D&md5=c075ba8ca6ae3fd440b7be3dbfe36eacCAS |

[23]  P. H. Lay, R. H. Magnuson, H. Taube, Inorg. Chem. 1989, 28, 3001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks12ku74%3D&md5=4ed574d53234a83484694d03e2ff190aCAS |

[24]  Z. Cao, W. P. Forest, Y. Gao, P. E. Fanwick, Y. Zhang, T. Ren, Inorg. Chem. 2011, 50, 7364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKmsLg%3D&md5=16a429d1450629c2bd9483ce7ad2e784CAS | 21766790PubMed |

[25]  D. X. West, J. K. Swearingen, A. K. Hermetet, L. J. Ackerman, C. Presto, J. Mol. Struct. 2000, 522, 27.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Sqtrk%3D&md5=191ff9eea693e4605029a2ea984992d2CAS |

[26]  W. Zhou, B. Li, L. Zhu, J. Ding, Y. Zhang, L. Lu, X. Yang, J. Mol. Struct. 2004, 690, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFequw%3D%3D&md5=4ee6ecec942b4bd9ec587b2afeeaa658CAS |

[27]  W. Zhou, K. Leng, Y. Zhang, L. Lu, J. Mol. Struct. 2003, 657, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvV2ktLg%3D&md5=0c6afb72f4f29cbcf24d6f185d84de06CAS |

[28]  H. Arslan, U. Flörke, N. Külcü, Turk. J. Chem. 2004, 28, 673.
         | 1:CAS:528:DC%2BD2MXhtFCnsb8%3D&md5=1589fe87c059b9647dac7b560cad472dCAS |

[29]  L. R. Gahan, T. M. Donlevey, T. W. Hambley, Inorg. Chem. 1990, 29, 1451.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFSlurc%3D&md5=9bfca7f653c4cb2b34b5036b1faa3cb2CAS |

[30]  G. Kemp, A. Roodt, W. Purcell, K. R. Koch, J. Chem. Soc., Dalton Trans. 1997, 4481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFenur8%3D&md5=7660834771095e19e10029c1a122439aCAS |

[31]  M. Bonamico, G. Dessy, V. Fares, L. Scaramuzza, J. Chem. Soc. A 1971, 3195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XnsFSm&md5=11dd4ce10b029824cd77a910c243a594CAS |

[32]  W. Zhou, W. Yang, L. Qiu, Y. Zhang, Z. Yu, J. Mol. Struct. 2005, 749, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ynsL8%3D&md5=3a470f86aa8e3e4bb1f6385e5b5b450cCAS |

[33]  I. F. Taylor, M. S. Weininger, E. L. Amma, Inorg. Chem. 1974, 13, 2835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlvVSntb0%3D&md5=7e9e925301d322e8849c79a06d76c884CAS |

[34]  R. C. Elder, L. R. Florian, R. E. Lake, A. M. Yacynych, Inorg. Chem. 1973, 12, 2690.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsFSntb4%3D&md5=f01235c6f8d9b211f380e3130c1bbc9dCAS |

[35]  M. H. Dickman, R. J. Doedens, E. Deutsch, Inorg. Chem. 1980, 19, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsleksrs%3D&md5=4aaab462f39e706c1ad37ee7f65e1701CAS |

[36]  D. P. Fairlie, W. G. Jackson, G. M. McLaughlin, Inorg. Chem. 1989, 28, 1983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvF2qsL8%3D&md5=4a8d7d53a2ca85ddc490d8da9ae22c18CAS |

[37]  S. Parkin, H. Hope, J. Appl. Cryst. 1998, 31, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1yrtw%3D%3D&md5=7896b2b73c5b57f4d3d30f51cbb65759CAS |

[38]  Z. Otwinowski, W. Minor, in Methods in Enzymology (Eds C. W. Carter, Jr, R. M. Sweet) 1997 Vol 276 (Macromolecular Crystallography Part A), pp. 307–326 (Academic Press: New York, NY).

[39]  G. M. Sheldrick, Acta Crystallogr. 1997, A64, 112.

[40]  S. Parkin, B. Moezzi, H. Hope, J. Appl. Cryst. 1995, 28, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1Krurg%3D&md5=d9be696f5d89282ecc8fe4e24d549cccCAS |

[41]  International Tables for Crystallography, Vol. C: Mathematical, Physical and Chemical Tables (Ed. A. J. C. Wilson) 1992 (Kluwer Academic: London).

[42]  A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=7ef7d36c64ac20944777b8342be85945CAS |

[43]  S. Parkin, Acta Crystallogr. 2000, A56, 157.
         | 1:CAS:528:DC%2BD3cXit1yltrs%3D&md5=0e4cef24c1f681f0f9b549f2756ea6a0CAS |