Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dithienylbenzothiadiazole-Based Donor-Acceptor Organic Semiconductors and Effect of End Capping Groups on Organic Field Effect Transistor Performance

Prashant Sonar A D , Samarendra P. Singh A C , Ting Ting Lin A and Ananth Dodabalapur A B D
+ Author Affiliations
- Author Affiliations

A Institute of Materials Research and Engineering, 3 Research Link Singapore 117602, Republic of Singapore.

B Permanent address: Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA.

C Current address: Shiv Nadar University, Greater Noida, 203207, India.

D Corresponding authors. Email: sonarp@imre.a-star.edu.sg; ananth.dodabalapur@engr.utexas.edu

Australian Journal of Chemistry 66(3) 370-380 https://doi.org/10.1071/CH12421
Submitted: 23 September 2012  Accepted: 23 November 2012   Published: 9 January 2013

Abstract

Donor-Acceptor-Donor (D-A-D) based conjugated molecules 4,7-bis(5-(4-butoxyphenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BOP-TBT) and 4,7-bis(5-(4-trifluoromethyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TFP-TBT) using thiophene-benzothiadiazole-thiophene central core with trifluoromethyl phenyl and butoxyphenyl end capping groups were designed and synthesised via Suzuki coupling. Optical, electrochemical, thermal, and organic field effect transistor (OFET) device properties of BOP-TBT and TFP-TBT were investigated. Both small molecules possess two absorption bands. Optical band gaps were calculated from the absorption cut off to be in the range of 2.06–2.25 eV. Cyclic voltammetry indicated reversible oxidation and reduction processes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be in the range of 5.15–5.40 eV and 3.25–3.62 eV, respectively. Upon testing both materials for OFET, trifluoromethylphenyl end capped material (TFP-TBT) shows n-channel behaviour whereas butoxyphenyl end capped material (BOP-TBT) shows p-channel behaviour. Density functional theory calculations correlated with shifting of HOMO-LUMO energy levels with respect to end capping groups. Vacuum processed OFET of these materials have shown highest hole carrier mobility of 0.02 cm2/Vs and electron carrier mobility of 0.004 cm2/Vs, respectively using Si/SiO2 substrate. By keeping the central D-A-D segment and just by tuning end capping groups gives both p- and n-channel organic semiconductors which can be prepared in a single step using straightforward synthesis.


References

[1]  Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFyjsLo%3D&md5=03d86f20e8f73df1e18de50321dcb5d4CAS |

[2]  M. T. Lloyd, J. E. Anthony, G. G. Malliaras, Mater. Today 2007, 10, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGgs7bI&md5=33b850d38cbce42cd8da85b2f2a46c41CAS |

[3]  F. Garnier, Acc. Chem. Res. 1999, 32, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpvVSisg%3D%3D&md5=9b7173efc94c9cf4fa32ac17cc893974CAS |

[4]  M. Mas-Torrent, C. Rovira, Chem. Soc. Rev. 2008, 37, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12hsbk%3D&md5=e8dcba1c2c8a37576dfd45e5cd1a0f74CAS |

[5]  S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Angew. Chem. Int. Ed. 2008, 47, 4070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslyksro%3D&md5=fe2afa22e42cbf7fa695c46d0da8dd1fCAS |

[6]  H. Klauk, Organic Electronics: Materials, Manufacturing and Applications 2006 (Wiley-VCH: Weinheim).

[7]  K. Müllen, G. Wegner, Electronic Materials: The Oligomer Approach 1998 (Wiley-VCH: Weinheim).

[8]  H. E. Katz, A. J. Lovinger, C. Klock, T. Siegrist, W. Li, Y. Y. Lin, A. Dodabalapur, Nature 2000, 404, 478.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVyjtLg%3D&md5=be656273a52f629ac6991cb652edfe4fCAS |

[9]  B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 2000, 403, 521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShtL0%3D&md5=a6263e5f57f316dc3db344d20bbf33a8CAS |

[10]  B. Yoo, B. A. Jones, D. Basu, D. Fine, T. Jung, S. Mohapatra, A. Facchetti, K. Dimmler, M. R. Wasielewski, T. J. Marks, A. Dodabalapur, Adv. Mater. 2007, 19, 4028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaht7%2FO&md5=e46db4aaf5e248774189a18becfafb30CAS |

[11]  M. H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 1348.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFemsQ%3D%3D&md5=cc3eeac4522479e68da8a394cb3784beCAS |

[12]  A. Facchetti, Y. Deng, A. C. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 2000, 39, 4547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslSjtg%3D%3D&md5=fbaa31a7f3f2589a34599ae853808583CAS |

[13]  J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1eqsLk%3D&md5=e581fada3e9b12e0eafb492e8a330c29CAS |

[14]  S. Ando, R. Murakami, J. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 14996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyjt73M&md5=a105d75352b78bb06e6a316045fd1971CAS |

[15]  K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, S. Tokito, Angew. Chem. Int. Ed. 2003, 42, 10.

[16]  C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVartbY%3D&md5=6cd075c4498c6150053da6a1342fd627CAS |

[17]  D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, IEEE Electron Device Lett. 1997, 18, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVektro%3D&md5=6a708511547eb72332de3b0dffa0ad18CAS |

[18]  H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1CqtL4%3D&md5=0d84f900428beea9e032d87352d349f4CAS |

[19]  F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. Chem. Soc. 1993, 115, 8716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslSmsrk%3D&md5=d0ea4ffe3d35129a458f882773c374abCAS |

[20]  D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFGhsw%3D%3D&md5=9afad17e200bc009e04174787ef0bac2CAS |

[21]  Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 1998, 120, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1KnsA%3D%3D&md5=337da3bced14c18445060c11e811ebe7CAS |

[22]  M. M. Shi, H. Z. Chen, J. Z. Sun, J. Ye, M. Wang, Chem. Commun. 2003, 14, 1710.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVSjtb4%3D&md5=ff84fdc152edf291251b58f807c73e17CAS |

[24]  C. Di, J. Li, G. Yu, Y. Xiao, Y. Guo, Y. Liu, X. Qian, D. Zhu, Org. Lett. 2008, 10, 3025.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVyntb4%3D&md5=b2faf08a7dd0bd077d47f8b0cd9b5d4bCAS |

[25]  M. Mas-Torrent, C. Rovira, Chem. Soc. Rev. 2008, 37, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12hsbk%3D&md5=e8dcba1c2c8a37576dfd45e5cd1a0f74CAS |

[26]  C. R. Newman, C. D. Frisbie, D. A. da. S. Filho, J. L. Bredas, P. C. Ewbank, K. R. Mann, Chem. Mater. 2004, 16, 4436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVyju74%3D&md5=22414ab161422fa9306668ac63b4dcd0CAS |

[27]  Y. Yamashita, Sci. Technol. Adv. Mater. 2009, 10, 024313.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KisrvJ&md5=704605d709acbab83cbd2022d1a9efddCAS |

[29]  J. A. Kong, E. Lim, K. K. Lee, S. Lee, S. H. Kim, Sol. Energy Mater. Sol. Cells 2010, 94, 2057.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  P. Sonar, S. P. Singh, S. Sudhakar, A. Dodabalapur, A. Sellinger, Chem. Mater. 2008, 20, 3184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslChs78%3D&md5=9fe2060caaaca23281f9b68e47d6f5a6CAS |

[31]  P. Sonar, S. P. Singh, P. Leclère, M. Surin, R. Lazzaroni, T. T. Lin, A. Dodabalapur, A. Sellinger, J. Mater. Chem. 2009, 19, 3228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1yrsbs%3D&md5=90160170071efbb4a0c8caa6b88b5ef4CAS |

[32]  P. Sonar, S. G. Santamaria, T. T. Lin, A. Sellinger, H. Bolink, Aust. J. Chem. 2012, 65, 1244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksbzN&md5=08ea085d0859ca039c59ca771392d85aCAS |

[33]  T. Kono, D. Kumaki, J. i. Nishida, T. Sakanoue, M. Kakita, H. Tada, S. Tokito, Y. Yamashita, Chem. Mater. 2007, 19, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs12gsbc%3D&md5=17e4bada611276f57e3f772b92dc929bCAS |

[34]  G. Myhre, A. Sayyad, S. Mataka, S. Pau, Appl. Phys. Lett. 2011, 99, 091108.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Huang, Y. Xu, Q. Hou, W. Yang, M. Yuan, Y. Cao, Macromol. Rapid Commun. 2002, 23, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlCqurs%3D&md5=8ea255e580b4205b79a29ce103a75fa6CAS |

[36]  M. Akhtaruzzaman, M. Tomura, J. Nishida, Y. Yamashita, J. Org. Chem. 2004, 69, 2953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqt70%3D&md5=e954809d6f4c9cdf765c22a8f06edc14CAS |