Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structure, Physical Properties, and Displacement Current Measurement of an n-Type Organic Semiconductor: 2:3,5:6-Bis(1,1-dicyanoethylene-2,2-dithiolate)-quinone

Jinchong Xiao A B E , Yasuo Azuma C E , Yi Liu A , Gang Li A , Fengxia Wei A , Ke Jie Tan A , Christian Kloc A , Hua Zhang A , Yutaka Majima C D and Qichun Zhang A D
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

B Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.

C Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan, and CREST, Japan Science and Technology Agency, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.

D Corresponding authors. Email: majima@msl.titech.ac.jp; qczhang@ntu.edu.sg

E These authors contributed equally to this work.

Australian Journal of Chemistry 65(12) 1674-1678 https://doi.org/10.1071/CH12325
Submitted: 10 July 2012  Accepted: 24 August 2012   Published: 25 September 2012

Abstract

An n-type organic semiconductor 2:3,5:6-bis(1,1-dicyanoethylene-2,2-dithiolate)-quinone (BDQ) has been successfully synthesised and characterised. The single crystal structure of BDQ, determined by single-crystal X-ray crystallography, indicated that BDQ is a planar molecule with strong face-to-face π-π stacking (3.40 Å) and S···S interactions (3.66 Å) between neighbouring molecules, which might be in favour of the effective charge transport. The UV-vis spectrum shows that BDQ has shoulder absorption up to 550 nm (2.25 eV). The electrochemical property displays that the HOMO-LUMO gap of BDQ obtained from the half-wave redox potential is 1.92 eV. The displacement current measurement of BDQ-based devices is demonstrated and discussed.


References

[1]  (a) T. Manaka, E. Lim, R. Tamura, M. Iwamoto, Nat. Photonics 2007, 1, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyrtr7J&md5=b28c919f8a0dbf0148adfbde1cec26d9CAS |
      (b) T. Manaka, E. Lim, R. Tamura, D. Yamada, M. Iwamoto, Appl. Phys. Lett. 2006, 89, 072113.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Manaka, C. Q. Li, X. M. Cheng, M. Iwamoto, J. Chem. Phys. 2004, 120, 7725.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) T. Manaka, E. Lim, R. Tamura, M. Iwamoto, Thin Solid Films 2006, 499, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2rtL0%3D&md5=178d693720b02a44b1313b414777ebc1CAS |
      (b) Y. M. Chen, C. F. Lin, J. H. Lee, J. Huang, Solid-State Electron. 2008, 52, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) Y. Noguchi, N. Sato, Y. Miyazaki, H. Ishii, Appl. Phys. Lett. 2010, 96, 143305.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Noguchi, N. Sato, Y. Tanaka, Y. Nakayama, H. Ishii, Appl. Phys. Lett. 2008, 92, 203306.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Gao, C. A. Di, Y. Hu, X. Yang, H. Fan, F. Zhang, Y. Liu, H. Li, D. Zhu, J. Am. Chem. Soc. 2010, 132, 3697.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Hu, X. Gao, C. A. Di, X. Yang, F. Zhang, Y. Liu, H. Li, D. Zhu, Chem. Mater. 2011, 23, 1204.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) K. Maeda, N. Okabayashi, S. Kano, S. Takeshita, D. Tanaka, M. Sakamoto, T. Teranishi, Y. Majima, ACS Nano 2012, 6, 2798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVOgtrg%3D&md5=9e9420ff355d63ce9afde28f26cb27edCAS |
      (b) I. Díez-Pérez, Z. Li, S. Guo, C. Madden, H. Huang, Y. Che, X. Yang, L. Zang, N. Tao, ACS Nano 2012,
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Suzuki, Y. Yasutake, Y. Majima, Org. Electron. 2010, 11, 594.
         | Crossref | GoogleScholarGoogle Scholar |

[5]     (a) K. Müllen, U. Scherf, Organic Light-Emitting Devices: Synthesis, Properties and Applications, 2006 (Wiley: Weinheim).
      (b) M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, Chem. Rev. 2005, 105, 1491.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L. Brédas, Chem. Rev. 2007, 107, 926.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Yang, F. Wudl, Adv. Mater. 2009, 21, 1401.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) J. Xiao, Y. Divayana, Q. Zhang, H. M. Doung, H. Zhang, F. Boey, X. W. Sun, F. Wudl, J. Mater. Chem. 2010, 20, 8167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahurnJ&md5=87ad604dde99aff8df697f4afc410274CAS |
      (b) J. Xiao, H. Y. Yang, Z. Y. Yin, J. Guo, F. Boey, H. Zhang, Q. Zhang, J. Mater. Chem. 2011, 21, 1423.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Q. Zhang, Y. Divayana, J. Xiao, Z. Wang, E. R. T. Tiekink, H. M. Doung, H. Zhang, F. Boey, X. W. Sun, F. Wudl, Chem. – Eur. J. 2010, 16, 7422.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Xiao, B. Yang, J. I. Wong, Y. Liu, F. X. Wei, K. J. Tan, X. Teng, Y. Wu, L. Huang, C. Kloc, F. Boey, J. Ma, H. Zhang, H. Y. Yang, Q. Zhang, Org. Lett. 2011, 13, 3004.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Xiao, Z. Yin, H. Li, Q. Zhang, F. Boey, H. Zhang, Q. Zhang, J. Am. Chem. Soc. 2010, 132, 6926.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Li, H. M. Duong, Z. Zhang, J. Xiao, L. Liu, Y. Zhao, H. Zhang, F. Huo, S. Li, J. Ma, F. Wudl, Q. Zhang, Chem. Commun. 2012, 48, 5974.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Xiao, H. M. Duong, Y. Liu, W. Shi, L. Ji, G. Li, S. Li, X. Liu, J. Ma, F. Wudl, Q. Zhang, Angew. Chem. Int. Ed. 2012, 51, 6094.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) E. Ahmed, A. L. Briseno, Y. Xia, S. A. Jenekhe, J. Am. Chem. Soc. 2008, 130, 1118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1egtw%3D%3D&md5=2c7b7acce48b402a4700240c45fb5febCAS |
      (b) X. Guo, F. S. Kim, S. A. Jenekhe, M. D. Watson, J. Am. Chem. Soc. 2009, 131, 7206.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. J. Tonzola, M. M. Alam, W. Kaminsky, S. A. Jenekhe, J. Am. Chem. Soc. 2003, 125, 13548.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater. 2004, 16, 4556.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) T. Kono, D. Kumaki, J. Nishida, T. Sakanoue, M. Kakita, H. Tada, S. Tokito, Y. Yamashita, Chem. Mater. 2007, 19, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs12gsbc%3D&md5=d4c6cb95f0c50e2e5ae8257729587b71CAS |
      (b) S. Ando, J. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Am. Chem. Soc. 2005, 127, 5336.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) A. L. Briseno, S. C. B. Mannsfeld, P. J. Shamberger, F. S. Ohuchi, Z. Bao, S. A. Jenekhe, Y. Xia, Chem. Mater. 2008, 20, 4712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKqsbo%3D&md5=544226be2581db9697b726902c5ce551CAS |
      (b) A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao, Y. Xia, Mater. Today 2008, 11, 38.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) X. Feng, L. Liu, S. Wang, D. Zhu, Chem. Soc. Rev. 2010, 39, 2411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2rtL0%3D&md5=d6498ba9746396b0b479e546575e9dcbCAS |
      (b) L. Liu, M. Yu, X. Duan, S. Wang, J. Mater. Chem. 2010, 20, 6942.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) M. Mamada, D. Kumaki, J. Nishida, S. Tokito, Y. Yamashita, Appl. Mater. Inter. 2010, 2, 1303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKrs78%3D&md5=a5115bd38d5889c8abad25ab404ab788CAS |
      (b) N. Hayashi, T. Yoshikawa, M. Kurakawa, T. Ohnuma, Y. Sugiyama, H. Higuchi, Mol. Cryst. Liq. Cryst. 2006, 456, 133.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. S. Yang, C. W. Ko, J. Org. Chem. 2006, 71, 844.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Barsberg, T. Elder, D. Felby, Chem. Mater. 2003, 15, 649.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. J. Ono, Y. Suzuki, D. M. Khramov, M. Ueda, J. L. Sessler, C. W. Bielawski, J. Org. Chem. 2011, 76, 3239.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Mamada, J. Nishida, S. Tokito, Y. Yamashita, Chem. Commun. 2009, 2177.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. R. Hatchard, J. Org. Chem. 1964, 29, 660.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXmtVylsg%3D%3D&md5=f6fef82f2d5f61be946c43289def7e36CAS |

[13]  Y. Yamashita, T. Suzuki, G. Saito, T. Mukai, J. Chem. Soc. Chem. Commun. 1986, 1489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVKlsL4%3D&md5=d55fd5799b4255564cdd94f63b7457dcCAS |

[14]  (a) Y. Majima, D. Kawakami, S. Suzuki, Y. Yasutake, Jpn. J. Appl. Phys. 2007, 46, 390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sku7g%3D&md5=3c2083e5ad0a2780deadc4e8c5761fb3CAS |
      (b) S. Suzuki, Y. Yasutake, Y. Majima, Jpn. J. Appl. Phys. 2008, 47, 3167.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Suzuki, Y. Yasutake, Y. Majima, Org. Electron. 2010, 11, 594.
         | Crossref | GoogleScholarGoogle Scholar |