Oxyhalogen–Sulfur Chemistry: Oxidation of a Thiourea Dimer, Formamidine Disulfide, by Chlorine Dioxide
Bice S. Martincigh A , Morgen Mhike B , Kayode Morakinyo B , Risikat Ajibola Adigun B and Reuben H. Simoyi A B CA School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, Republic of South Africa.
B Department of Chemistry, Portland State University, Portland, OR 97207-0751, USA.
C Corresponding author. Email: rsimoyi@pdx.edu
Australian Journal of Chemistry 66(3) 362-369 https://doi.org/10.1071/CH12181
Submitted: 5 April 2012 Accepted: 21 November 2012 Published: 11 February 2013
Abstract
The oxidation of formamidine disulfide, FDS, the dimer of thiourea, by aqueous chlorine dioxide has been studied in highly acidic and mildly acidic media. FDS is one of the possible oxidation intermediates formed in the oxidation of thiourea by oxyhalogens to urea and sulfate. The reaction is exceedingly slow, giving urea and sulfate with a stoichiometric ratio of 5 : 14 FDS to chlorine dioxide after an incubation period of up to 72 h and only in highly acidic media which discourages the disproportionation of chlorine dioxide to the oxidatively inert chlorate. Mass spectrometric data suggest that the oxidative pathway proceeds predominantly through the sulfinic acid, proceeding next to the products sulfate and urea, while by-passing the sulfonic acid. Transient formation of the unstable sulfenic acid was also not observed.
References
[1] M. Mrakavova, M. Melichercik, A. Olexova, L. Treindl, Collect. Czech. Chem. Commun. 2003, 68, 23.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGjsbY%3D&md5=e2bd641f6590d3cb49a5fed01e6a0096CAS |
[2] B. Neumann, S. C. Muller, M. J. B. Hauser, O. Steinbock, R. Simoyi, N. S. Dalal, Abstr. Pap. Am. Chem. Soc. 1995, 209, 234..
[3] M. Kaholek, L. Treindl, React. Kinet. Catal. Lett. 1998, 63, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFWgs70%3D&md5=067478e67728f4bcd3411990d2bede73CAS |
[4] L. Kolar-Anic, G. Schmitz, J. Chem. Soc., Faraday Trans. 1992, 88, 2343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xltlymurg%3D&md5=ac9e76c6e1032dea36e022f903d8c84dCAS |
[5] R. Cervellati, K. Honer, S. D. Furrow, C. Neddens, S. Costa, Helv. Chim. Acta 2001, 84, 3533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVSisLw%3D&md5=3f6bd32cc9f20533012c0e90e542e611CAS |
[6] K. R. Kim, D. J. Lee, K. J. Shin, J. Chem. Phys. 2002, 117, 2710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Smu7g%3D&md5=f2d1248754c57ed9b79d3298daaaaaf1CAS |
[7] P. V. N. Lalitha, R. Ramaswamy, Collect. Czech. Chem. Commun. 1992, 57, 2235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1ymtrY%3D&md5=ce792636c79286c43b0b0c45c4a01861CAS |
[8] L. P. Tikhonova, S. V. Rosokha, E. A. Bakai, Kinet. Catal. 1997, 38, 225.
| 1:CAS:528:DyaK2sXivV2hsbs%3D&md5=c8bdd562671bb8510cc8d76e0376d1bbCAS |
[9] V. Petrov, S. K. Scott, K. Showalter, Philos. Trans. Roy. Soc. A 1994, 347, 631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFCisr8%3D&md5=5317fc5902cdb86b6252cef4f149fee4CAS |
[10] C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1993, 97, 11569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslSgurY%3D&md5=dfdbae037f5b3327f7d9e925b67e152dCAS |
[11] I. R. Epstein, K. Kustin, P. Dekepper, M. Orban, Sci. Am. 1983, 248, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtlartbY%3D&md5=8578122d0bc3d78ce9ad0aa23e3f31c3CAS |
[12] C. J. Doona, S. I. Doumbouya, J. Phys. Chem. 1994, 98, 513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlCgtg%3D%3D&md5=0c2276aa0f4d22b1ef21820e728fc6aaCAS |
[13] C. J. Doona, R. Blittersdorf, F. W. Schneider, J. Phys. Chem. 1993, 97, 7258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVWit7k%3D&md5=16b9434149a0f2428e9f0d98da07cefaCAS |
[14] S. I. Doumbouya, A. F. Munster, C. J. Doona, F. W. Schneider, J. Phys. Chem. 1993, 97, 1025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmslKktQ%3D%3D&md5=c72a96ee2964ced7a3e4ed741f097be9CAS |
[15] C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1994, 98, 4012.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1yns7o%3D&md5=9f852d57f5c4ab234cd48ccd12d25969CAS |
[16] C. R. Chinake, R. H. Simoyi, J. Chem. Soc., Faraday Trans. 1997, 93, 1345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislGnt7c%3D&md5=a907ea03e844c8e74d9e4ca099c21263CAS |
[17] M. Alamgir, I. R. Epstein, Int. J. Chem. Kinet. 1985, 17, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFaju74%3D&md5=ab4318f1c91fad715bbab0af4a300776CAS |
[18] R. M. Noyes, J. Am. Chem. Soc. 1980, 102, 4644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFCkuro%3D&md5=64c5670ab60f86cfac234302b330f8acCAS |
[19] G. Rabai, M. Orban, J. Phys. Chem. 1993, 97, 5935.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXis1WlsbY%3D&md5=6d5be1e263d82307c4eca753dc96bbd5CAS |
[20] G. Peintler, I. Nagypal, I. R. Epstein, J. Phys. Chem. 1990, 94, 2954.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1Kjs7c%3D&md5=d2d8d8c58ae11d8b4759d137bebc3761CAS |
[21] T. R. Chigwada, E. Chikwana, R. H. Simoyi, J. Phys. Chem. A 2005, 109, 1081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslKktg%3D%3D&md5=4e144e2940dcf0d43e5f5eccbe7aafe5CAS |
[22] T. C. Bruice, A. B. Sayigh, J. Am. Chem. Soc. 1959, 81, 3416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXntFSq&md5=e9f3ac59ec91933614705b0567e60833CAS |
[23] T. C. Bruice, R. T. Markiw, J. Am. Chem. Soc. 1957, 79, 3150.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXosFKmtg%3D%3D&md5=38562922ef2302a9090b64759b1cdc40CAS |
[24] M. A. Salem, C. R. Chinake, R. H. Simoyi, J. Phys. Chem. 1996, 100, 9377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVClu7w%3D&md5=406e5914f37067fc7ca69b9ce56eac7aCAS |
[25] S. V. Makarov, C. Mundoma, J. H. Penn, S. A. Svarovsky, R. H. Simoyi, J. Phys. Chem. A 1998, 102, 6786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslGqtL4%3D&md5=e03d1142890fad01b0de21ca380c90d8CAS |
[26] S. A. Svarovsky, R. H. Simoyi, S. V. Makarov, J. Chem. Soc. Dalton Trans. 2000, 511.
| 1:CAS:528:DC%2BD3cXhtVKjur0%3D&md5=ce708e259939390fa9bf9238d9b5d7c8CAS |
[27] G. Rabai, R. T. Wang, K. Kustin, Int. J. Chem. Kinet. 1993, 25, 53.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1eqsr0%3D&md5=ff0bf34c646ca4f8616df13243dc8cb2CAS |
[28] G. Gordon, J. Am. Water Works Assoc. 2001, 93, 163.
| 1:CAS:528:DC%2BD3MXislGisL4%3D&md5=49f692c38eb79e4097c473772098012dCAS |
[29] O. Olagunju, P. D. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSitw%3D%3D&md5=3108c08a2991033eea51c16088361411CAS |
[30] L. Wang, D. W. Margerum, Inorg. Chem. 2002, 41, 6099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVOks78%3D&md5=4846ab86e5a15c98209393dd69d92452CAS |
[31] J. F. Ojo, J. L. Petersen, A. Otoikhian, R. H. Simoyi, Can. J. Chem. 2006, 84, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyks7g%3D&md5=4e70066e82b78fffd00b2b23907c8442CAS |
[32] J. L. Petersen, A. A. Otoikhian, M. K. Morakinyo, R. H. Simoyi, Can. J. Chem. 2010, 88, 1247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtr3J&md5=23526a5bd57e0ef12c01122e2338e28dCAS |
[33] S. V. Makarov, C. Mundoma, J. H. Penn, J. L. Petersen, S. A. Svarovsky, R. H. Simoyi, Inorg. Chim. Acta 1999, 286, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFKmu70%3D&md5=4e5cd4ad42705381b5e83338112ec66aCAS |
[34] O. Olagunju, P. A. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSitw%3D%3D&md5=3108c08a2991033eea51c16088361411CAS |
[35] O. Olagunju, P. A. Siegel, R. Olojo, R. H. Simoyi, J. Phys. Chem. A 2006, 110, 2396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSitw%3D%3D&md5=3108c08a2991033eea51c16088361411CAS |
[36] T. R. Chigwada, R. H. Simoyi, J. Phys. Chem. A 2005, 109, 1094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms12rsQ%3D%3D&md5=81e13710830ad39fb02eff68dd58a70cCAS |
[37] S. Carballal, B. Alvarez, L. Turell, H. Botti, B. A. Freeman, R. Radi, Amino Acids 2007, 32, 543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVGnsbo%3D&md5=da8fc968a48d180ea5cd2892935eca2aCAS |
[38] S. A. Koksharov, G. V. Chistyakova, O. N. Murav’ev, S. V. Makarov, Russ. J. Appl. Chem. 1999, 72, 1225.
[39] S. V. Makarov, Y. V. Polenov, A. N. Aleksandrova, V. V. Budanov, Izv. Vuz. Khim. Kh. Tekh. 1983, 26, 1231.
| 1:CAS:528:DyaL2cXntVaquw%3D%3D&md5=cdece7d5648e4106c62cfdb4d0307e13CAS |
[40] S. V. Makarov, C. Mundoma, S. A. Svarovsky, X. Shi, P. M. Gannett, R. H. Simoyi, Arch. Biochem. Biophys. 1999, 367, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ghtr8%3D&md5=1ebbd150d503d31849238acd3c710e88CAS |
[41] S. V. Makarov, E. V. Kudrik, R. van Eldik, E. V. Naidenko, J. Chem. Soc. Dalton Trans. 2002, 4074.
| 1:CAS:528:DC%2BD38Xos1eksr0%3D&md5=56bbf46a7f00dc71d760e00fb6e0f7e3CAS |