Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Bioreductive Alkylation of DNA by Kalafungin: A Theoretical Investigation

Paul A. Hume A , Margaret A. Brimble A and Jóhannes Reynisson A B
+ Author Affiliations
- Author Affiliations

A School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

B Corresponding author. Email: j.reynisson@auckland.ac.nz

Australian Journal of Chemistry 65(4) 402-408 https://doi.org/10.1071/CH12018
Submitted: 17 January 2012  Accepted: 20 February 2012   Published: 30 March 2012

Abstract

The thermochemical cascades for the bioreductive alkylation of DNA by kalafungin were calculated using density functional theory (DFT). Guanine (G) was used as a model nucleotide. According to the calculations both one- and two-electron reduction of kalafungin is possible in vivo. Furthermore, a clear pathway was found for both mono- and bis-alkylations of G with the former favoured. Alkylation at C-8 position of G is considerably more exothermic than on the N2-exocyclic amine. In the absence of experimentally identified adduct structures of kalafungin, the results presented here support the idea that this compound readily forms covalent bonds with DNA resulting in pro-mutagenic lesions.


References

[1]  M. E. Bergy, J. Antibiot. (Tokyo) 1968, 21, 454.
         | 1:CAS:528:DyaF1MXit1yltA%3D%3D&md5=6526db9aac52a36fce211aca5c02855aCAS |

[2]  H. Hoeksema, W. C. Krueger, J. Antibiot. (Tokyo) 1976, 29, 704.
         | 1:CAS:528:DyaE28Xlt1eku7s%3D&md5=71c3c345a5104d66fa8645e3973bdf3fCAS |

[3]  L. E. Johnson, A. Dietz, Appl. Microbiol. 1968, 16, 1815.
         | 1:CAS:528:DyaF1MXjs1Chtg%3D%3D&md5=495d644a926a4954a127db5b3b51dbe8CAS |

[4]  K. Tatsuta, K. Akimoto, M. Annaka, Y. Ohno, M. Kinoshita, Bull. Chem. Soc. Jpn. 1985, 58, 1699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsVWlu7Y%3D&md5=a2b6e86867eedb39e890c7faa283e632CAS |

[5]  H. Tsujibo, T. Sakamoto, K. Miyamoto, G. Kusano, M. Ogura, T. Hasegawa, Y. Y. Inamori, Chem. Pharm. Bull. (Tokyo) 1990, 38, 2299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVOksro%3D&md5=92d92c1de82031df946194129ddb6661CAS |

[6]  P. A. Hume, J. Sperry, M. A. Brimble, Org. Biomol. Chem. 2011, 9, 5423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOrsrY%3D&md5=0d7acc2b4a6788c892da23c6b0057908CAS |

[7]  J. Sperry, P. Bachu, M. A. Brimble, Nat. Prod. Rep. 2008, 25, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Sms7g%3D&md5=cfff6e81b84af3f63fcbd7ec8ba9971eCAS |

[8]  H. W. Moore, Science 1977, 197, 527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlt1KksLo%3D&md5=dc5393b11f36d554f9c7cceffef1a6beCAS |

[9]  H. W. Moore, R. Czerniak, Med. Res. Rev. 1981, 1, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhsleltL8%3D&md5=ab6519d6724ab469921a2d4bc59c845dCAS |

[10]  D. Siegel, P. Reigan, D. Ross, in Advances in Bioactivation Research 2008, Volume IX, pp. 169–197 (Ed. A. Elfarra) (Springer, New York, NY).

[11]  S. Steenken, J. Reynisson, Phys. Chem. Chem. Phys. 2010, 12, 9088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVGiur8%3D&md5=ad4b81010fda44118a956593cb41f67cCAS |

[12]  V. M. Arlt, D. H. Phillips, J. Reynisson, Org. Biomol. Chem. 2011, 9, 6100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWgsr%2FE&md5=b2c9663606c30ca86b4a8b656f3fc5faCAS |

[13]  M. Freccero, R. Gandolfi, M. Sarzi-Amadè, J. Org. Chem. 2003, 68, 6411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltF2ku7s%3D&md5=9f2005d6d8dbe26182930d0f873a31acCAS |

[14]  M. Freccero, C. Di Valentin, M. Sarzi-Amadè, J. Am. Chem. Soc. 2003, 125, 3544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGgurc%3D&md5=2c9d153e05e273ab84afac8ab3fd98c7CAS |

[15]  J. J. Dannenberg, M. Tomasz, J. Am. Chem. Soc. 2000, 122, 2062.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFyrs78%3D&md5=30f1737e470c3a4f2de111bbb1217585CAS |

[16]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).

[17]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=4e325aafa58d58509cc76a9081d284e4CAS |

[18]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ebe7dc68a8c38908388e1cd8680e671cCAS |

[19]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1db8a301b13c0d54e6e18228104ee4b7CAS |

[20]  P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFGnsL4%3D&md5=795229bcb3a50a9664833d16fff9af34CAS |

[21]  M. W. Wong, Chem. Phys. Lett. 1996, 256, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWlsbg%3D&md5=f32bec7b2399ef57ce0407955e66f1f1CAS |

[22]  J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods 1996, p. 142 (Gaussian Inc.: Wallingford, CT).

[23]  S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc. 1997, 119, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXps1yrsg%3D%3D&md5=4e49d879e1a2ab4a6f64cffdc440e57fCAS |

[24]  M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, T. R. Tuttle, J. Phys. Chem. A 1998, 102, 7787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVOjsbs%3D&md5=6464e6cecac0f58440975b0dcdfc4535CAS |

[25]  J. Reynisson, M. Stiborová, V. Martínek, G. Gamboa da Costa, D. H. Phillips, V. M. Arlt, Environ. Mol. Mutagen. 2008, 49, 659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWiurnJ&md5=751e4d59e954d8b795fa962818f29b99CAS |

[26]  V. M. Arlt, Mutagenesis 2005, 20, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagur7L&md5=f3c74f3c8e7e58c5aef854b0daba242eCAS |

[27]  R. F. Anderson, M. A. Brimble, M. R. Nairn, J. E. Packer, J. Chem. Soc., Perkin Trans. 2 1999, 475.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKnt7o%3D&md5=202b67eb44c23c89ebb9c8c0a1913523CAS |

[28]  J. Butler, B. M. Hoey, Biochim. Biophys. Acta 1993, 1161, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVyhsb0%3D&md5=13b5e3ff93fb6f0759f38a1119249ca3CAS |

[29]  Assuming that the lactone opens before the dihydropyran ring, then the stereochemistry of the alkene generated from the first rearrangement must be E, since the double bond is contained within the pyran ring.

[30]  W. F. Veldhuyzen, Y.-F. Lam, S. E. Rokita, Chem. Res. Toxicol. 2001, 14, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslWlsrk%3D&md5=e75cd20c8b4fba6c86ce4ec15aa40121CAS |

[31]  D. H. Phillips, in The Cancer Handbook 2007, second edition, Volume 2, pp. 1–13 (Ed. M. R. Alison) (John Wiley & Sons, Ltd.: Hoboken, NJ).

[32]  M. A. Brimble, M. R. Nairn, Tetrahedron Lett. 1998, 39, 4879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlGiu78%3D&md5=171134428a45837aced5d57ca1e3d40eCAS |

[33]  A common reagent for the two-electron reduction of quinones.

[34]  M. Brendel, A. Ruhland, Mutat. Res. Rev. Genet. Toxicol. 1984, 133, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXpslKqtw%3D%3D&md5=e2332cba297fe4ab02f0094828105e7eCAS |

[35]  R. Car, M. Parrinello, Phys. Rev. Lett. 1985, 55, 2471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVOlug%3D%3D&md5=8ddc40e5f1ba8a4d20ca7962fda70ba0CAS |

[36]  J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVynurc%3D&md5=7a06382f45d589916740c227ec0fea33CAS |

[37]  M. J. Frisch, J. A. Pople, J. Chem. Phys. 1984, 80, 3265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFOqu7k%3D&md5=f64277ec2d8b11684afc1223035e4660CAS |

[38]  uB3LYP/6–31+G(d,p)//6–311+G(2df,p).