Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Pyrido[1,2-a]pyrimidinones and Thiazolo[3,2-a]pyrimidinones: Precursors for Pyridyl- and Thiazolyliminopropadienones, R–N=C=C=C=O

Heidi Gade Andersen A B and Curt Wentrup A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Qld 4072, Australia.

B Current address: Cheminova A/S, 7620 Lemvig, Denmark.

C Corresponding author. Email: wentrup@uq.edu.au

Australian Journal of Chemistry 65(2) 105-112 https://doi.org/10.1071/CH11414
Submitted: 25 October 2011  Accepted: 3 December 2011   Published: 21 February 2012

Abstract

2-Pyridyliminopropadienone 6 is formed together with 2-aminopyridine on flash vacuum thermolysis (FVT) of 2-pyridylamino-pyridopyrimidinone 16a and observed by Ar matrix IR spectroscopy, but the two products recombine on warming to room temperature to regenerate the starting material. FVT of the picolinylamino-pyridopyrimidinones 16b and 16c generated mixtures of pyridyliminopropadienone 6 and picolinyliminopropadienones 19b and 19c, respectively. These reactions can be understood in terms of fragmentation of the open-chain bis(2-pyridylamino)methyleneketene intermediates 20 or the thermal interconversion of pyridopyrimidinones 16 and mesoionic pyridopyrimidinium olates 21. 2-Thiazoyliminopropadienone 28 was obtained in an analogous manner by FVT of the 2-(methylthio)thiazolopyrimidinone 24. However, the corresponding dihydro derivative 31 yielded cyanoketene 36 as the major product.


References

[1]  (a) H. Bibas, D. W. J. Moloney, R. Neumann, M. Shtaiwi, P. V. Bernhardt, C. Wentrup, J. Org. Chem. 2002, 67, 2619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFymtrY%3D&md5=992080d3f8f3dbddc13b501d9df5dd4aCAS |
      (b) B. E. Fulloon, C. Wentrup, Aust. J. Chem. 2009, 62, 115.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. Lecoq, B. A. Chalmers, R. N. Veedu, D. Kvaskoff, P. V. Bernhardt, C. Wentrup, Aust. J. Chem. 2009, 62, 1631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFentrfP&md5=6f932acc45aff9cc96d241541a8cf382CAS |

[3]  C. Plüg, W. Frank, C. Wentrup, J. Chem. Soc. Perkin 1999, 2, 1087.

[4]  M. Shtaiwi, C. Wentrup, J. Org. Chem. 2002, 67, 8558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVWgsr4%3D&md5=f8ffd7e5329f9e6bc5384f1b7b45c26dCAS |

[5]  A. Fiksdahl, C. Plüg, C. Wentrup, J. Chem. Soc., Perkin Trans. 2000, 2, 1841.See also
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. G. Andersen, U. Mitschke, C. Wentrup, J. Chem. Soc. Perkin 2001, 2, 602.

[7]  B. Fulloon, C. Wentrup, J. Org. Chem. 1996, 61, 1363.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosVKntw%3D%3D&md5=7153d5cddf2ffef1d74ae539cc653d47CAS |

[8]  A. J. Barnes, H. E. Hallam, J. D. R. Howells, J. Chem. Soc., Faraday Trans. II 1972, 68, 737.Methanethiol IR spectrum:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XktVCntr8%3D&md5=49dc8ac4849b8929e3bb241cca7c4f8fCAS |

[9]  J. J. Finnerty, C. Wentrup, J. Org. Chem. 2005, 70, 9735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKgsLzM&md5=718e537af41f64e6563b374be3b85467CAS |

[10]  G. Kollenz, Imidoylketenes, in Science of Sythesis 2006, 23, Chapter 23.10, pp. 351–380. H. Perst, Ketenimines, in Science of Sythesis 2006, 23, Chapter 23.17, pp. 781–898.

[11]  C. Wentrup, V. V. R. Rao, W. Frank, B. E. Fulloon, D. W. J. Moloney, T. Mosandl, J. Org. Chem. 1999, 64, 3608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1egurk%3D&md5=748c389c18d68e43a813e6224485b227CAS |

[12]  F.-C. Ye, B.-C. Chen, X. Huang, Synthesis 1989, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFCksrg%3D&md5=392cfb570b002dadd97093a25f076516CAS |

[13]  D. W. J. Moloney, M. W. Wong, R. Flammang, C. Wentrup, J. Org. Chem. 1997, 62, 4240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVSqtrg%3D&md5=5d8952fb08292166d18ba3b59a081efeCAS |

[14]  A. P. Gaywood, L. Hill, S. H. Imam, H. McNab, G. Neumajer, W. J. O’Neill, P. Matyus, N. J. Chem. 2010, 34, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGnsLk%3D&md5=7da2ec2d437a07fdc1bbae094a234ab0CAS |

[15]  S. Ham, D. M. Birney, J. Org. Chem. 1996, 61, 3962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFynurk%3D&md5=13166c760ac80b768bc9050f93133436CAS |

[16]  (a) R. Breslow, J. Am. Chem. Soc. 1957, 79, 1762.
         | 1:CAS:528:DyaG2sXlt1ygug%3D%3D&md5=b3b72200b34d668d800f43a6eaf30059CAS |
      (b) A. J. Arduengo, J. R. Goerlich, W. J. Marshall, Justus Liebigs Ann. Chem. 1997, 79, 365.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. Maier, J. Endres, H. P. Reisenauer, Angew. Chem. Int. Ed. Engl. 1997, 36, 1709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVSjsLw%3D&md5=85311ceb442874a49d03738e052f6b19CAS |

[18]  (a) G. Sbrana, E. Castellucci, M. Gianneschi, Spectrochim. Acta 1967, 23A, 751.Thiazole IR spectrum:
      (b) G. Davidovics, C. Garrigou-Lagrange, J. Chouteau, J. Metzger, Spectrochim. Acta 1967, 23A, 1477.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) M. Wierzejewska, Z. Mielke, Chem. Phys. Lett. 2001, 349, 227.HNCS IR spectrum:
         | 1:CAS:528:DC%2BD3MXptFSqu7c%3D&md5=94b008a0fc4823ddbb1b2d67da54ccacCAS |
      (b) C. T. Pedersen, F. Jensen, R. Flammang, Aust. J. Chem. 2009, 62, 69.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  K. V. J. Jose, S. R. Gadre, K. Sundararajan, K. S. Viswanathan, J. Chem. Phys. 2007, 127, 104 501.HCCH IR spectrum:
         | Crossref | GoogleScholarGoogle Scholar |

[21]  G. A. McGibbon, J. HruSak, D. J. Lavorato, H. Schwarz, J. K. Terlouw, Chem. Eur. J. 1997, 3, 232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVyhtbs%3D&md5=4af97afe5ce0a70c5065b9efa3283edfCAS |

[22]  O. R. Barbeau, C. Cano-Soumillac, R. J. Griffin, I. R. Hardcastle, G. C. M. Smith, C. Richardson, W. Clegg, R. W. Harrington, B. T. Golding, Org. Biomol. Chem. 2007, 5, 2670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVSht7w%3D&md5=7cb02ad61c852df7cdcf5299e995696aCAS |

[23]  C. Addicott, C. Wentrup, Aust. J. Chem. 2008, 61, 592.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVKmur8%3D&md5=30d9882ce87aa357a403a031d794c14cCAS |

[24]  D. Kvaskoff, C. Wentrup, Aust. J. Chem. 2010, 63, 1694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqsbjP&md5=24ee58737b3de3f02c77a74484d0e7e8CAS |

[25]  G. Roma, M. D. Braccio, G. Leoncini, B. Aprile, Farmaco 1993, 48, 1225.
         | 1:CAS:528:DyaK2cXjtFGntrg%3D&md5=4b766a825843a0c702f0f70824f14468CAS |

[26]  (a) H. R. Snyder, M. M. Robinson, J. Am. Chem. Sc. 1952, 74, 4910.
         | 1:CAS:528:DyaG3sXms1Shtg%3D%3D&md5=068ed96f4ae4490d17ef713212c62789CAS |
      (b) V. Oakes, H. N. Rydon, J. Chem. Soc. 1958, 209.
         | Crossref | GoogleScholarGoogle Scholar |