Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A New Synthetic Protocol for One-Pot Preparations of 5-Halo-1,4-disubstituted-1,2,3-triazoles

Lingjun Li A B , Yanyan Li A , Ran Li A , Anlian Zhu A and Guisheng Zhang A
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Environmental Science, Henan Normal University, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Xinxiang 453007, China.

B Corresponding author. Email: lingjunlee@htu.cn

Australian Journal of Chemistry 64(10) 1383-1389 https://doi.org/10.1071/CH11067
Submitted: 11 February 2011  Accepted: 2 June 2011   Published: 23 August 2011

Abstract

In this paper, a new synthetic protocol for one-pot preparations of 5-halo-1,4-disubstituted-1,2,3-triazoles is provided by rational combination of a CuI catalyzed azide–alkyne cycloaddition (CuAAC) reaction and an oxidative halogenation reaction. CuI- N-chlorosuccinimide (NCS) and CuBr-NCS reaction systems are developed, respectively, for effective preparations of 5-iodo-1,4-disubstituted-1,2,3-triazoles and 5-bromo-1,4-disubstituted-1,2,3-trizoles under mild conditions with a high tolerance of various sensitive groups.


References

[1]  (a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. C. Kolb, K. B. Sharpless, Drug Discov. Today 2003, 8, 1128.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  V. D. Bock, H. Hiemstra, J. H. Maarseveen, Eur. J. Org. Chem. 2006, 71, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, A. A. Genaz-zani, Med. Res. Rev. 2008, 28, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  F. Amblard, J. H. Hyun Cho, R. F. Schinazi, Chem. Rev. 2009, 109, 4207.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  K. V. Hänni, D. V. Leigh, Chem. Soc. Rev. 2010, 39, 1240.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. Dondoni, A. Marra, Chem. Rev. 2010, 110, 4949.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. van Dijk, D. T. S. Rijkers, R. M. J. Liskamp, C. F. van Nostrum, W. E. Hennink, Bioconjug. Chem. 2009, 20, 2001.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  H. A. El-Sagheerab, T. Brown, Chem. Soc. Rev. 2010, 39, 1388.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  R. K. Iha, K. L. Wooley, A. M. Nyström, D. J. Burke, M. J. Kade, C. J. Hawker, Chem. Rev. 2009, 109, 5620.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P. L. Golas, K. Matyjaszewski, Chem. Soc. Rev. 2010, 39, 1338.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Patai, Z. Rappoport, in The Chemistry of Functional Groups: Supplement D2, The Chemistry of Halides, Pseudo-Halides and Azides, 1995, Part 1, p. 2 (Wiley: Chichester).

[15]  (a) R. F. Heck, J. Am. Chem. Soc. 1968, 90, 5518.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn. 1971, 44, 581.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. Baba, E. Negishi, J. Am. Chem. Soc. 1976, 98, 6729.
         | Crossref | GoogleScholarGoogle Scholar |

[18]     (a) (a) Reviews on 1,3-dipolar cycloadditions, see: W. Carruthers, in Cycloaddition Reactions in Organic Chemistry 1990, p. 269 (Pergamon: Oxford).
      (b) K. V. Gothelf, K. A. Jorgensen, Chem. Rev. 1998, 98, 863.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. L’abbé, Chem. Rev. 1969, 69, 345.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Spiteri, J. E. Moses, Angew. Chem. Int. Ed. 2010, 49, 31.

[19]  (a) A. Štimac, I. Leban, J. Kobe, Synlett 1999, 1069.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Joubert, R. F. Schinazi, L. A. Agrofoglio, Tetrahedron 2005, 61, 11744.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. E. Hein, J. C. Tripp, L. Krasnova, K. B. Sharpless, V. V. Fokin, Angew. Chem. Int. Ed. 2009, 48, 8018.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Huang, S. J. F. Macdonald, J. P. A. Harrity, Chem. Commun. 2009, 436.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  B. H. M. Kuijpers, G. C. T. Dijkmans, S. Groothuys, P. J. L. M. Quaedflieg, R. H. Blaauw, F. L. van Delft, F. P. J. T. Rutjes, Synlett 2005, 3059.

[23]  J. Garcia-Álvarez, J. Díez, J. Gimeno, Green Chem. 2010, 12, 2127.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  B. R. Buckley, S. E. Dann, H. Heaney, Chem. – Eur. J. 2010, 16, 6278.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Dinér, T. Andersson, J. Kjellén, K. Elbing, S. Hohmannb, M. Grøtli, New J. Chem. 2009, 33, 1010.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. M. Wu, J. Deng, Y. Li, Q. Y. Chen, Synthesis 2005, 1314.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  L. Li, G. Zhang, A. Zhu, L. Zhang, J. Org. Chem. 2008, 73, 3630.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  V. Malnuit, M. Duca, A. Manout, K. Bougrin, R. Benhida, Synlett 2009, 2123.

[29]  N. Joubert, R. F. Schinazi, L. A. Agrofoglio, Tetrahedron 2005, 61, 11744.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  V. D. Bock, R. Perciaccante, T. P. Jansen, H. Hiemstra, J. H. van Maarseveen, Org. Lett. 2006, 8, 919.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. March, Advanced Organic Chemistry, 4th edn 2000 (Wiley-Interscience: New York, NY).

[32]  A. K. Mohanakrishnan, C. Prakash, N. Ramesh, Tetrahedron 2008, 64, 3242.

[33]  L. Lista, A. Pezzella, A. Napolitano, M. d’Ischia, Tetrahedron 2008, 64, 234.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Iskra, S. Stavber, M. Zupan, Tetrahedron Lett. 2008, 49, 893.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  K. Rajender Reddy, M. Venkateshwar, C. Uma Maheswari, P. Santhosh Kumar, Tetrahedron Lett. 2010, 51, 2170.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  R. Carrington, G. Shaw, D. V. Wilson, J. Chem. Soc. 1965, 6864.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  (a) G. Zhang, L. Shi, Q. Liu, J. Wang, L. Li, X. Liu, Tetrahedron 2007, 63, 9705.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. B. Alper, S. Huang, C. Wong, Tetrahedron Lett. 1996, 37, 6029.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  F. Wang, Z. Yang, H. Jin, L. Zhang, L. Zhang, Tetrahedron Asymmetry 2007, 18, 2139.
         | Crossref | GoogleScholarGoogle Scholar |