Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Anticipating π-Bond Dispositions in Cyclic, Even, Classical Hydrocarbons

Richard F. Langler A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4 L 1G8 Canada. Email: rlangler@mta.ca

Australian Journal of Chemistry 64(3) 324-334 https://doi.org/10.1071/CH10384
Submitted: 20 October 2010  Accepted: 25 January 2011   Published: 11 March 2011

Abstract

A new technique, which employs π-bond placement coefficients, is presented. That technique, in conjunction with a few parameters that are readily available from traditional Hückel theory, permits one to systematically anticipate π-bond placements for optimized lowest-lying singlet states. One may then foresee the relative magnitudes of calculated ΔHf values for selected sets of structural isomers. Structural predictions are compared with parameterization method 3 (PM3) calculations, density functional theory calculations and experimental results. Reasonable expectations for the most stable structure narrow the choice of molecules that may then be scrutinized by more exact computations or by experiment.


References

[1]  E. E. van Tamelen, S. P. Pappas, J. Am. Chem. Soc. 1963, 85, 3297.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. H. R. Hennigar, R. F. Langler, Aust. J. Chem. 2010, 63, 490.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvV2rsbc%3D&md5=3a0ae2c02911c158cd03cc9975328a68CAS |

[3]  R. F. Langler, Aust. J. Chem. 2001, 54, 261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Kiu78%3D&md5=57084eeb65f1d4883a486f62c861f797CAS |

[4]  R. F. Langler, A. M. McBain, Aust. J. Chem. 2002, 55, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFejtA%3D%3D&md5=cab131f60c7d89f9797c9e84e1f6613cCAS |

[5]  R. F. Langler, Chem. Educator 2000, 5, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslWhs7c%3D&md5=e576e9da0768589f1bd4213994aa9266CAS |

[6]  R. F. Langler, Aust. J. Chem. 2008, 61, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFWquw%3D%3D&md5=9ab7277176d1820c68201821e9b89272CAS |

[7]  T. Bally, S. Masamune, Tetrahedron 1980, 36, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXkslWjt7c%3D&md5=06917af1cfbfc8f5be3ac2638aa5b96cCAS |

[8]  R. F. Langler, Aust. J. Chem. 2008, 61, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFWqug%3D%3D&md5=cfc68c425081b71c02b882cee7201278CAS |

[9]  M. U. Frederiksen, R. F. Langler, M. A. Staples, S. D. Verma, Aust. J. Chem. 2000, 53, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1aks7w%3D&md5=fa7ac4740661778aece4a47971942715CAS |

[10]  D. W. J. Cruickshank, R. A. Sparks, Proc. Roy. Soc. A 1960, 258, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtFGgtQ%3D%3D&md5=1f59eeab238890deae1fe4ef7b21c588CAS |

[11]  R. F. Langler, Aust. J. Chem. 2002, 55, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFejtw%3D%3D&md5=763a8dde98a41ca4916b588c537e01d8CAS |